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ABSTRACT

Network coding can remarkably improve the network capacity by combining incoming

packets at intermediate nodes. However, the packet combining also causes the network

to be particularly vulnerable to the pollution attack that injects false data into the

information flow of the network. This dissertation includes two studies on mitigating

pollution attack in two-hop wireless relay network that employs random network coding.

First, we investigate how the finite field size affects the network coding performance

in terms of the probability of symbol error and the throughput in adversarial networks

where the false data is injected by the malicious attackers at source nodes and/or relay

nodes. Also, we examine how the optimal field size that minimizes the probability of

symbol error or that maximizes throughput changes as the trustworthiness of node or

the number of combined packets changes.

Second, we propose two schemes for detecting the polluted packets and discarding

them before decoding by exploiting physical layer information which is directly overheard

from the source nodes. The proposed scheme I applies the threshold-based method

to detect the presence of falsely injected data within each packet, while the proposed

scheme II compares all received network-coded packets and selects the most trustable

ones. Unlike many existing signature-based detection schemes, the proposed schemes do

not require that additional information bits are attached into each packet.
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CHAPTER 1. INTRODUCTION

In this chapter, we introduce backgrounds of channel coding, network coding, and

network coding security. Then, we review the advanced related literatures for security

issues on network coding. Finally, we discuss the contributions and the outline of this

dissertation.

1.1 Channel Coding (Reed-Solomon Codes)

The wireless communication system applies channel encoding and decoding tech-

niques, in order to prevent the transmitted data from being received incorrectly due to

wireless channel impairments. Let

m = {m1, · · · ,mK} (1.1)

be the message word that the transmitter node wants to send to the receiver node where

mk is the kth symbol over finite field GF (q). Fig.1.1 shows the overall data transmission

model with channel encoding and decoding procedures. At first, the transmitter node

encodes (transforms) the message word m to the corresponding channel codeword. If

systematic Reed-Solomon codes [13],[23] are used, the codeword encoded from m is given

by

x = {x1, · · · , xN} (1.2)

= {m1, · · · ,mK︸ ︷︷ ︸
m

, w1, · · · , wN−K︸ ︷︷ ︸
parity symbols

} (1.3)
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Encoder Decoder

Wireless Channel

Receiver Node

𝐦 = 𝑚1, … ,𝑚𝐾  𝐦 = {  𝑚1, … ,  𝑚𝐾}

𝐱 = {𝑥1, … , 𝑥𝑁}

+

𝐞 = {𝑒1, … , 𝑒𝑁}

𝐫 = 𝐱 + 𝐞

Transmitter Node

Figure 1.1 Data transmission model with channel encoding and decoding.

where xn denotes the nth symbol over GF (q) and N = q − 1 denotes the length of a

codeword. Since the codeword is systematic, the first K symbols of the codeword are

equal to message symbols and the following N − K symbols w1, · · · , wN−K are parity

symbols which are calculated from m by Reed-Solomon encoder. When the transmitter

node sends x through wireless channel to the receiver node, the channel error vector

e = {e1, · · · , eN} (1.4)

is added to x where en is over GF (q), so that the receiver node obtains

r = x + e (1.5)

which can be seen as the noisy version of x. And then, Reed-Solomon decoder at the

receiver node decodes r and obtains

m̂ = {m̂1, · · · , m̂K} (1.6)
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as the decoder output.

If the codeword length N is desired to be smaller than q−1, shortened Reed-Solomon

codes can be applied. In this case, the transmitter node generates a new message word

m
′
= {0, · · · , 0︸ ︷︷ ︸

q−N−1
zeros

,m1, · · · ,mK︸ ︷︷ ︸
m

} (1.7)

by inserting q−N−1 zeros before the original message word m. The systematic codeword

encoded from m
′

is given by

x
′
= {

m
′︷ ︸︸ ︷

0, · · · , 0,m1, · · · ,mK , w
′

1, · · · , w
′

N−K︸ ︷︷ ︸
x

} (1.8)

where w
′
1, · · · , w

′
N−K are parity symbols calculated from m

′
by Reed-Solomon encoder.

As a result, the length of x
′

is q − 1. Then, the desired codeword

x = {m1, · · · ,mK , w
′

1, · · · , w
′

N−K} (1.9)

with the length N is obtained by removing the first q−N −1 zero symbols from x
′
. The

transmitter node sends x and the receiver nodes receives r = x + e. Then, the receiver

node generates

r
′
= {0, · · · , 0︸ ︷︷ ︸

q−N−1
zeros

, r1, · · · , rN︸ ︷︷ ︸
r

} (1.10)

by adding q − N − 1 zero symbols before r and put it into the Reed-Solomon decoder.

Then,

m̂
′
= {m̂′1, · · · , m̂

′

q−N−1, m̂
′

q−N , · · · , m̂
′

q−N+K−1︸ ︷︷ ︸
m̂

} (1.11)

is obtained as the decoder output. By removing the first q − N − 1 symbols from m̂
′
,

the reconstructed message word m̂ is obtained.

By the property of Reed-Solomon codes, the decoder successfully reconstructs m (i.e.,

m̂ = m) if there are at most

t =

⌊
N −K

2

⌋
(1.12)
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different symbols between r and x. In other words, m̂ is not equal to m if the channel

error vector e has more than t nonzero symbols. In (1.12), bac denotes the largest integer

which is not larger than a. For example, b1.9c = 1 and b2c = 2.

1.2 Network Coding

Network coding is an innovative relaying strategy that remarkably advances through-

put, reliability, and capacity of the network by a simple and powerful idea that each

intermediate node (i.e., relay node) in the network combines multiple packets into a

packet called network-coded packet and send it [1]. A network-coded packet which is

successfully received at the destination node is represented as

pr =
S∑
s=1

cr,sxs, r = 1, · · · , R (1.13)

where R denotes the number of received network-coded packets, r denotes the packet

index, and S denotes the number of combined message packets. The network coding

coefficient vector

cr = {cr,1, · · · , cr,S} (1.14)

where cr,s ∈ GF (q) denotes the network coding coefficient corresponding to the sth

message packet xs is attached in the header of the network-coded packet [4]. If the

destination node receives S network-coded packets p1, · · · ,pS whose coding coefficient

vectors c1, · · · , cS are linearly independent, the original message packets are recovered
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by 
c1

...

cS


︸ ︷︷ ︸

C

−1 
p1

...

pS

 =


c1

...

cS


−1 

c1

...

cS




x1

...

xS

 (1.15)

=


x1

...

xS

 . (1.16)

The basic idea of random network coding [2] is to randomly select the network coding

coefficients from the finite field GF (q). By using random network coding, relay nodes

do not need to communicate each other to decide linearly independent network coding

coefficient vectors. In other words, random network coding enhances the distributed char-

acteristics of the network than the conventional deterministic network coding. Instead,

there is the nonzero probability that network-coded packets received at the destination

node are not linearly independent, so that the original message packets cannot be re-

covered. However, this additional communication overhead can be negligibly small by

applying large field size (e.g., q = 256), at the cost of higher computational complexity

to find the inverse matrix of C.

1.3 Security Issues on Network Coding

In this section, we introduce several kinds of security attacks for wireless relay net-

works using network coding, focusing on the pollution attack that we address throughout

this dissertation.

1.3.1 Eavesdropping

In eavesdropping, the malicious adversaries try to secretly overhear transmitted pack-

ets to understand the content of those packets. It is known that network coding has better
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robustness against eavesdropping than the conventional packet forwarding, because net-

work coding basically combines the original message packets [5]. In order to understand

the content of the original message packets in network coding, the eavesdroppers must

successfully listen the enough number of linearly independent network-coded packets. If

they fail in this, they cannot understand any of the message packets.

1.3.2 Entropy Attack

In entropy attack [30],[34],[37], the malicious adversaries intentionally transmit lin-

early dependent (i.e., non-innovative) network-coded packets, in order to waste the net-

work resources to send the useless packets. That is, entropy attackers badly use the

property that destination nodes in network coding require the enough number of linearly

independent network-coded packets in order to reconstruct the original message packets.

1.3.3 Pollution Attack

In pollution attack, the malicious relays intentionally send false packets which are

different from true packets, in order to prevent destinations from receiving correct in-

formation [38]. It is also called false packet injection attack or Byzantine attack. Con-

sidering pollution attack, a network-coded packet which is received at the destination is

represented as

pr =
S∑
s=1

cr,sxs︸ ︷︷ ︸
true packet

+ fr, r = 1, · · · , R (1.17)

where fr denotes the falsely injected vector capturing any type of modification that causes

pr to be different from the true network-coded packet by [19]. If fr is a nonzero vector,

the packet pr is called polluted. Otherwise, pr is called unpolluted.

It has been shown that packet-mixing property of network coding might cause the

network to be particularly weak to pollution attack [10]. This is because all message
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packets can be incorrectly reconstructed due to even one polluted network-coded packet.

If the destination receives network-coded packets p1, · · · ,pS and their coefficient vectors

c1, · · · , cS are linearly independent, the reconstructed message packets are given by
x̂1

...

x̂S

 =


c1

...

cS


︸ ︷︷ ︸

C

−1 
p1

...

pS

 (1.18)

=


c1

...

cS


−1 

c1

...

cS




x1

...

xS

+


c1

...

cS


−1 

f1
...

fS

 (1.19)

=


x1

...

xS

+


c1

...

cS


−1 

f1
...

fS

 (1.20)

=


x1

...

xS

+


c̃1,1 · · · c̃1,S

...
. . .

...

c̃S,1 · · · c̃S,S


︸ ︷︷ ︸

C−1


f1
...

fS

 (1.21)

=


x1

...

xS

+


c̃1,1f1 + · · ·+ c̃1,SfS

...

c̃S,1f1 + · · ·+ c̃S,SfS

 . (1.22)

From (1.22), we can see that each false injection vector fr is multiplied by each element

in C−1 and is added to all of the original message packet x1, · · · ,xS. If q is not small, it

is likely that all elements of C−1 are nonzero. Therefore, if f1 is a nonzero vector, it is

likely that all of x1, · · · ,xS are affected by f1. As a result, one polluted network-coded

packet can cause that all message packets are reconstructed wrongly.
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1.4 Related Literatures

Security issues of network coding have been addressed by many researchers in order

to make the network coding more practical and reliable on the adversarial environment.

The mixing characteristic of the network coding makes the network robust against the

eavesdropping attack [5], but vulnerable to the false injection attack because even one

polluted network-coded packet can cause all message packets to be incorrectly recovered

[6, 10]. Several approaches have been suggested to overcome this drawback of network

coding. Kim et al. [7] proposed a watchdog scheme that examines whether a relay node

is malicious or not by comparing packets which are received from different nodes. Ho et

al. [8] proposed a scheme that attaches the additional information into a network-coded

packet, in order for the destination node to detect if the received network-coded packet is

modified by malicious adversary. Jaggi et al. [11] proposed a signature-based distributed

scheme to detect Byzantine attacks. Kim et al. [9] proposed packet recycling scheme

that restores the true network-coded packet from the polluted network-coded packet by

exploiting the physical layer information. Tran et al. [28] proposed an authentication

method for multi-casting using network coding, based on its null space characteristics.

Yu et al. [31] suggested a new homomorphic signature scheme for network coding, not

to allow malicious relays to make a new signatures for their falsely injected packets.

Gkantsidis et al. [30] proposed a scheme that nodes collaborate to inform each other

about polluted data blocks, for peer-to-peer networks with network coding. Oggier et al.

[33] proposed an authentication scheme that polluted packets can be discarded through

verification at relays, as well as at destinations. Kehdi et al. [36] suggested a new

detection scheme for random network coding against pollution attack, by exploiting

subspace characteristics of random linear network coding. Yu et al. [32] proposed a

scheme employing MAC and key-predistribution for XOR-ing network coding against

pollution attack. Authors in [24], [25], [26], [27], [29], [35] proposed homomorphic MAC
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(Message Authentication Code) schemes to detect pollution attacks for network coding.

1.5 Dissertation Contributions and Outline

In this dissertation, we consider the two-hop wireless relay network in which malicious

adversaries can access network nodes and inject false data into true packets. As a result,

the destination nodes receive those polluted packets. In the pursuit of mitigating the

damage from pollution attack, we address the following two problems.

1. How parameters related to network-coding affect the performance, under pollution

attack?

2. How can the destination node detect polluted packets?

Chapter 2 investigates the first problem. We study how the finite field size q affects

the throughput and the probability of symbol error, on wireless two-hop relay networks

employing random network coding in which each node might intentionally inject false

data and the transmitted data is subject to wireless channel error. We show that the

probability of correct decoding exponentially decreases as the number of combined pack-

ets increases. We also present that the throughput is proportional to log2 q
q

bits per

transmitted symbol. We investigate the optimum field size to minimize the probability

of symbol error or to maximize the throughput, in terms of the number of combined pack-

ets and the trustworthiness of node. This chapter was modified from a paper published

in [20].

Chapter 3 addresses the second problem. We suggest two physical-layer schemes to

detect the integrity of received network-coded packets and exploit the detection result for

decoding the original messages, in the presence of false injection attacks. The integrity

is determined by utilizing the physical layer information that is directly overheard from

source nodes to the destination node. The proposed scheme I uses the threshold-based

approach to detect the presence of attack upon arrival of each network-coded packet,
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while the proposed scheme II compares all received network-coded packets and selects

the most trustable packets. We show that the proposed schemes provide the significantly

smaller probability of decoding error than the conventional random selection scheme

which does not exploit the physical-layer information and that they perform close to the

cryptographic scheme that requires computational and bandwidth overheads. We also

analyze the average delay showing that the proposed scheme I reconstructs the original

messages earlier than the proposed scheme II at the expense of the higher probability

of decoding error. We also provide the analysis and numerical results of the average

throughput. Part of this work has been published in [21].

Finally, Chapter 4 discusses future research works and concludes the dissertation.
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CHAPTER 2. FIELD SIZE OF RANDOM NETWORK

CODING IN UNTRUSTWORTHY NETWORKS

2.1 Introduction

In this chapter, we analyze the probability of symbol error and the throughput with

random network coding in untrustworthy networks, where the malicious attackers access

network nodes and purposely inject false data and data transmissions are subject to

wireless channel errors. We show that there exists an optimal field size that maximizes

the throughput (bits/channel use) or minimizes the probability of symbol error. We

examine the optimal field size in terms of the trustworthiness of node and the number of

combined packets in untrustworthy network. We also derive the asymptotic throughput

and asymptotic probability of decoding error as the number of combined packets becomes

large and examine how they change depending on the field size, the number of combined

packets, and node trustworthiness. We show that the probability of correct decoding

exponentially decreases with the increasing number of combined packets and that the

maximum throughput scales as log2 q
q

bits per symbol transmission where q is the finite

field size. The former suggests to restrict the number of combined packets when node

trustworthiness is low.

The remainder of this chapter is organized as follows. Section 2.2 describes the system

model. Section 2.3 provides the derivation and the numerical results of the probability

of symbol error. Section 2.4 presents the derivation and the numerical results of the

throughput. Finally, Section 2.5 concludes the chapter.
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2.2 System Model

We consider a two-hop wireless network consisting of S source nodes, R relay nodes,

and multiple destination nodes. Source nodes generate and send the new information to

the destination nodes through relay nodes where the packets from S source nodes are

linearly combined and sent to the destination nodes, as shown in Fig. 2.1.

+ +

+ +

. . .

. . .

. . .

𝐱1 𝐱𝑆

𝐟1 𝐟𝑆

𝐟R,1 𝐟R,𝑅

S1 S𝑆

D

R1 R𝑅

Figure 2.1 Two-hop network model.

The sth source node Ss sends a packet

x̃s = xs + fs, s = 1, · · · , S (2.1)

where xs is the true message packet and fs captures the intentional false packet injected

by Ss (pollution attack). We assume that xs and fs are vectors of elements from a Galois

field GF (q). We also assume that the elements of fs are independently chosen and that

nonzero values of fs are equiprobable. If fs = 0, then no false packet is injected by Ss.
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The trustworthiness of a node is measured by the probability that the transmitted packet

from the node is equal to its true message packet, i.e., P (fs = 0) = P (x̃s = xs).

The rth relay node Rr receives

ẋs,r = x̃s + es,r, r = 1, · · · , R (2.2)

where es,r denotes the packet error between Ss and Rr. If es,r = 0, Rr receives x̃s

correctly and, otherwise, Rr receives x̃s incorrectly. We assume that the elements of

es,r (symbol errors) are independent. Then, the rth relay node linearly combines ẋs,r to

produce a coded packet

x̃R,r =
S∑
s=1

cr,sẋs,r + fR,r, r = 1, · · · , R (2.3)

where the coefficients {cr,s} are randomly chosen with equal probability from GF (q)

and fR,r captures the intentionally or unknowingly injected false packet by Rr. The

multiplications and summations in (2.3) are over GF (q). The probability P (fR,r = 0)

represents the trustworthiness of node Rr. We assume that the coefficients are contained

in the packet header and are known by all destination nodes. We assume that fR,r’s are

independent across relays.

The reference destination node D receives

yr = x̃R,r + eR,r, r = 1, · · · , R (2.4)

=
S∑
s=1

cr,sẋs,r + fR,r + eR,r (2.5)

=
S∑
s=1

cr,s(x̃s + es,r) + fR,r + eR,r (2.6)

=
S∑
s=1

cr,s(xs + fs + es,r) + fR,r + eR,r (2.7)

where eR,r denotes the packet error between Rr and D.

The linear independence (innovativeness) of coded packets can be checked by examin-

ing the coding coefficients that are placed in the packet header. Given R coded packets,
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the probability that there exists a set of S coded packets that are linearly independent

is given by

PI(R, S) =
R∏

m=R−S+1

(
1− 1

qm

)
(2.8)

The probability of receiving such a set of linearly independent vectors given R packet

transmissions is PI(R, S). The destination may recover the message packets by calculat-

ing 
x̂1

...

x̂S

 = C−1


y[1]

...

y[S]

 (2.9)

= C−1

C


x1 + f1 + e1,[1]

...

xS + fS + eS,[S]

+


fR,[1] + eR,[1]

...

fR,[S] + eR,[S]


 (2.10)

=


x1

...

xS

+


f1 + e1,[1]

...

fS + eS,[S]

+ C−1


fR,[1] + eR,[1]

...

fR,[S] + eR,[S]

 (2.11)

where [i] ∈ {1, · · · , R} denotes the index of the selected coded packet, and

C =


c[1],1 · · · c[1],S

...
. . .

...

c[S],1 · · · c[S],S

 (2.12)

is the S × S encoding matrix, and

C−1 =


c̃1,1 · · · c̃1,S

...
. . .

...

c̃S,1 · · · c̃S,S

 (2.13)
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is the inverse matrix of C. Then,

x̂s = [c̃s,1, · · · , c̃s,S]


y[1]

...

y[S]


= xs + fs + es,[s] +

S∑
i=1

c̃s,i(fR,[i] + eR,[i]) (2.14)

denotes the sth recovered message packet.

From (2.14), the message packet xs can be successfully recovered, (i.e., x̂s = xs) if

fs + es,[s] +
S∑
i=1

c̃s,i(fR,[i] + eR,[i]) = 0. (2.15)

It should be noted from (2.15) that decoding of xs is not affected by the falsely injected

packets at other sources {fj, j 6= s} and the channel errors on other source-to-relay links

{ej,[s], j 6= s}, while the falsely injected packets at the relay and the channel errors on

the relay-to-destination links affect the decoding of all x1, · · · ,xS.

We consider q-ary quadrature amplitude modulation (QAM) over a Rayleigh fad-

ing channel with additive white Gaussian noise (AWGN). QAM is currently used for

higher order modulation in several wireless standards. In this setting, the symbol error

probability between Ss and Rr is given by [22]

P (es,r 6= 0) =
4

π

(
1− 1
√
q

)∫ π/2

0

(
1 +

1.5hγb
(q − 1) sin2 φ

)−1

dφ

− 4

π

(
1− 1
√
q

)2 ∫ π/4

0

(
1 +

1.5hγb
(q − 1) sin2 φ

)−1

dφ (2.16)

≈ 2(q − 1)

3hγb
(2.17)

where es,r is a symbol of es,r and

h =
S log2 q

S +R
(2.18)

and γb is the received SNR per information bit at a relay.
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2.3 Probability of Symbol Error

In this section we derive the probability of symbol error after decoding

P

(
fs + es,[s] +

S∑
i=1

c̃s,i(fR,[i] + eR,[i]) = 0

)
(2.19)

where fs, es,[s], fR,[i], eR,[i] denotes a symbol of fs, es,[s], fR,[i], and eR,[i], respectively. Let

u[i] = fR,[i] + eR,[i]

vs = fs + es,[s] (2.20)

denote a symbol of fR,[i] + eR,[i] and fs + es,[s], respectively. Then, it follows from (2.15)

that a symbol xs in xs can be correctly decoded, (i.e., x̂s = xs) if

vs +
S∑
i=1

c̃s,iu[i] = 0. (2.21)

It can be shown that the conditional probability that xs is correctly decoded given

u := (u[1], · · · , u[S]) = 0 (2.22)

is given by

P (x̂s = xs|u = 0) = P (vs = 0) (2.23)

= P (fs = 0)P (es,[s] = 0) +
(1− P (fs = 0))(1− P (es,[s] = 0))

q − 1
(2.24)

while that given u 6= 0 is given by

P (x̂s = xs|u 6= 0) =
qS−1 − P (vs = 0)

qS − 1
. (2.25)

Proof of (2.24) and (2.25) is provided in Appendix A.

Since the elements of u are independent, the probability of u = 0 is given by

P (u = 0) =
S∏
i=1

P (u[i] = 0) (2.26)
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where

P (u[i] = 0) = P (fR,[i] = 0)P (eR,[i] = 0) +
(1− P (fR,[i] = 0))(1− P (eR,[i] = 0))

q − 1
. (2.27)

Therefore, the conditional probability of correct decoding of a symbol given that S

linearly independent coded packets are received is given by

PC = P (x̂s = xs)

= P (x̂s = xs|u = 0)P (u = 0) + P (x̂s = xs|u 6= 0)P (u 6= 0). (2.28)

Then, the average probability of symbol error given R coded packets are available is

1− PCPI(R, S).

2.3.1 Trustworthy Source

If all source nodes are trustworthy (i.e., fs = 0) and the source-to-relay channels are

error-free (i.e., es,r = 0), then

P (x̂s = xs|u = 0) = P (vs = 0) (2.29)

= 1 (2.30)

for s = 1, · · · , S. Therefore, it follows from (2.25) and (2.28)

PC = P (u = 0) +
qS−1 − 1

qS − 1
P (u 6= 0) (2.31)

= P (u = 0) +
qS−1 − 1

qS − 1
(1− P (u = 0)) (2.32)

=
qS−1 − 1

qS − 1
+
qS − qS−1

qS − 1
P (u = 0) (2.33)

=
qS−1 − 1 + qS−1(q − 1)P (u = 0)

qS − 1
(2.34)

≈ 1 + (q − 1)P (u = 0)

q
. (2.35)
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2.3.2 Homogeneous Network

If the trustworthinesses of all nodes (source and relay) are the same, i.e.,

P (fs 6= 0) = P (fR,r 6= 0) := pf (2.36)

for all s = 1, · · · , S and r = 1, · · · , R, and the error probabilities on all links in the

network are the same, i.e.,

P (es,r 6= 0) = P (eR,r 6= 0) := pe (2.37)

for all s = 1, · · · , S and r = 1, · · · , R, then we obtain from (2.24) that

P (vs = 0) = P (u[i] = 0) (2.38)

= 1− pf − pe +
qpfpe
q − 1

. (2.39)

Therefore, it follows from (2.26)-(2.28) that

PC = α · αS +
qS−1 − α
qS − 1

(1− αS) (2.40)

=
αS+1(qS − 1) + qS−1 − α− qS−1αS + αS+1

qS − 1
(2.41)

=
qS−1(αS+1q + 1− αq−(S−1) − αS)

qS−1(q − q−(S−1))
(2.42)

=
1− αq−(S−1) + (αq − 1)αS

q − q−(S−1)
(2.43)

≈ 1 + (αq − 1)αS

q
(2.44)

where

α := 1− pf − pe +
qpfpe
q − 1

(2.45)

represents the trustworthiness of received symbol. From the expression in (2.44) we can

see that the probability of correct decoding decreases exponentially with the increasing

number of combined packets and that the decreasing rate depends on the trustworthiness

of received symbols. As the trustworthiness of symbol (α) decreases, the probability of

correct decoding decreases faster. This suggests to limit the number of combined nodes

when their trustworthiness are small or channels are erroneous.
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2.3.3 Numerical Results

Fig. 2.2 shows the average probability of symbol error versus the field size in log

scale for different values of node trustworthiness in homogeneous network. The num-

ber R of transmissions of coded packets by the relays is fixed (delay-limited scenario).

The trustworthiness of source node is determined by P (fs = 0) and that of relay node

is determined by P (fR,r = 0). We can see that there exists an optimal field size that

minimizes the average probability of symbol error. This follows from the tradeoff be-

tween the probability of linear independence of coded packets PI(R, S) in (2.8) and the

conditional probability of correct decoding PC in (2.28). As the field size q gets larger,

PI(R, S) increases while PC decreases. Since the average probability of symbol error is

1 − PCPI(R, S), these two conflicting effects result in an optimal q that minimizes the

average probability of symbol error. We also find that the optimal field size decreases

as the trustworthiness of node decreases. This follows from the higher probability of fs

(false injection) being canceled by es,[s] (channel error) for smaller q, suggesting the use

of small field size when the trustworthiness of node is low.

Fig. 2.3 shows the average probability of symbol error versus log of the field size

for different numbers of combined packets S for the case of γb=25dB and P (fs =

0)=P (fR,r = 0)=0.99, with the fixed rate of S
R

= 0.8. We note that there is an op-

timal field size to minimize the average probability of symbol error for each pair of S

and R. We also find that the optimal field size decreases with the increasing S.

Fig. 2.4 shows the average probability of symbol error versus the number of combined

packets for different levels of node trustworthiness for the case of q=32 and γb=30dB,

and S
R

=0.8. We can see that the average probability of symbol error increases as the

number of combined packets S increases.
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Figure 2.2 Probability of symbol error versus log of the field size for different levels of
node trustworthiness; S=10, R=12, γb=30dB.
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Figure 2.3 Probability of symbol error versus log of the field size for different numbers
of combined packets; γb=25dB, P (fs = 0)=P (fR,r = 0)=0.99.
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Figure 2.4 Probability of symbol error versus the number of combined packets for dif-
ferent levels of node trustworthiness; q=32, γb=30dB, S

R
=0.8.
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2.4 Throughput

The throughput W is defined as the average number of correctly decoded bits per

symbol transmission (channel use). For a given u, the decoding error events across the

source nodes are independent. This follows from the assumption that fs’s (es,r’s) are

independent. Hence, the conditional average number of correctly decoded symbols for a

given u is SP (x̂s = xs|u), and averaging it over u yields SPC .

With each random linear combination (a coded packet of length L bits) transmitted,

the relay appends a packet header identifying the encoding coefficients cr,s, s = 1, · · · , S,

which requires an additional S log2 q bits of overhead with every L log2 q bits transmitted.

Therefore, the throughput is given by

W =
L

L+ S

SPCPI(R, S) log2 q

S +R
(2.46)

≈ SPCPI(R, S) log2 q

S +R
(2.47)

where S + R is to account for S channel uses by S sources and R channel uses by R

relays, and log2 q is to account for the number of bits per q-ary symbol. In this chapter

we assume L � S such the factor L
L+S

is close to one. In homogeneous networks, it

follows from (2.8), (2.44), (2.46), that the throughput is given by

W =
S[1 + (αq − 1)αS]PI(R, S) log2 q

(S +R)q
. (2.48)

2.4.1 Large-Scale Homogeneous Network

For large S and R while β = S
R

fixed, it can be shown that PI(R, S) can be made

arbitrarily close to 1. Therefore, it follows from (2.43) and (2.46) that the throughput

approaches to

lim
S,R→∞

W ≈


β log2 q

1+β
, if pf + pe =

qpfpe
q−1

β log2 q
(1+β)q

, if pf + pe >
qpfpe
q−1

(2.49)
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where pf = P (fs 6= 0) = P (fR,r 6= 0) and pe = P (es,r 6= 0) = P (eR,r 6= 0). Proof of

(2.49) is provided in Appendix B. Since β
1+β

is an increasing function of β, the maximum

throughput of log2 q
2

and log2 q
2q

, depending on pf and pe, are achieved when β = 1, i.e.,

S = R. We can see from (2.49) that the convergence rate is faster with smaller α, i.e.,

larger pf or pe.

The condition pf + pe =
qpfpe
q−1

corresponds to the case of α = 1 and is satisfied if

pf = pe = 0 (trustworthy network). In error-free, attack-free scenario, all symbols are

received correctly, hence the throughput should increase on the order of log2 q/2.

The condition pf + pe >
qpfpe
q−1

corresponds to the case of α < 1, i.e., untrustworthy

network. The throughput converges to log2 q
2q

and the optimal field size that maximizes

the throughput is 2 or 4. The maximum achievable throughput with the optimal choice

of field size is 0.25.

2.4.2 Homogeneous Network with Large q

For large q, PC → αS+1 where α → (1 − pf )(1 − pe). Therefore, the throughput

converges to

lim
q→∞

W ≈ β

1 + β
[(1− pf )(1− pe)]S+1 log2 q (2.50)

It should be noted that the symbol error probability pe is an increasing function of q and

approaches to 1 as q approaches to ∞. Therefore, the throughput will be close to 0 for

large q.

2.4.3 Numerical Results

Fig. 2.5 shows the throughput (bits/symbol transmission) versus the field size in log

scale for different values of node trustworthiness. We find that the optimal field size that

maximizes the throughput decreases as the trustworthiness of node decreases. This is

similar to the optimal field size in Fig. 2.2 that minimizes the average probability of

symbol error when the number of transmissions is limited.
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Fig. 2.6 shows the throughput versus the field size in log scale for the different values

of S and R. We find that the optimal field size that maximizes the throughput decreases

as S increases and that the asymptotic maximum throughput of β log2 q
(1+β)q

= 2
9

is achieved

when q = 2 or 4. This matches well with the asymptotic result in (2.49). Figs. 2.5 and

2.6 indicate that the field size has to be decreased when the nodes are not trustworthy

or the number of nodes that are combined is large such as in large-scale networks.

Fig. 2.7 shows the throughput versus the number of combined packets S for different

levels of node trustworthiness. We can see that the throughput converges to β log2 q
(1+β)q

= 1
9

as S and R increase and that the convergence rate is faster when the nodes are less

trustworthy.

2.5 Conclusion

In this chapter, we showed that there exists an optimal field size that minimizes the

probability of symbol error or that maximizes the throughput. We found that the optimal

field size that minimizes the probability of symbol error decreases as the trustworthiness

of node decreases, suggesting the use of a smaller field size as the trustworthiness of node

decreases. We also found that the probability of correct decoding of packet decreases

exponentially with the increasing number of packets that are combined and that the

decreasing rate is faster when the trustworthiness of node is smaller. The asymptotic

result gives an insight to performance of random network coding in large-scale networks,

such as wireless sensor networks where the network nodes are not trustworthy and the

wireless channels are erroneous.
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Figure 2.5 Throughput versus log of the field size for different levels of node trustwor-
thiness; S=5, R=6, γb=15dB.
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Figure 2.6 Throughput versus log of the field size for different numbers of combined
packets; γb=20dB, P (fs = 0)=P (fR,r = 0)=0.9.
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Figure 2.7 Throughput versus the number of combined packets for different levels of
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=0.8.
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CHAPTER 3. PHYSICAL-LAYER APPROACH TO

DETECT POLLUTION ATTACK IN WIRELESS NETWORK

CODING

3.1 Introduction

In this chapter, we propose two physical layer approaches to filter out polluted pack-

ets, thereby improving the reliability of decoding, in the given two-hop wireless relay

networks where some coded packets might be polluted at the relay. The integrity of each

received coded packet is detected at the destination based on the Hamming distance

between the coded packet and the corresponding linear combination of noisy message

packets, which are directly overheard from the sources. Hence, the proposed schemes

do not require any overhead unlike traditional cryptographic schemes which require ad-

ditional bits attached in transmitted packets. The proposed scheme I uses the prede-

termined threshold to detect the presence of pollution attack within each coded packet

upon its arrival, while the proposed scheme II compares all coded packets to select the

coded packets having the highest integrity. Hence, the proposed scheme I spends the less

time to reconstruct the original messages than the proposed scheme II, while the pro-

posed scheme II provides the higher reliability of decoding. It is shown that both of the

proposed schemes provide the significantly lower probability of decoding error than the

traditional random selection scheme which does not exploit the physical-layer data and

performs close to the cryptographic schemes that need bandwidth and computational

overheads.
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The remaining part of this chapter is structured as follows. In Section 3.2, the system

model is presented. In Section 3.3, the mechanisms that the proposed schemes detect

the polluted coded packets are described. In Section 3.4, we provide how the attacker

generates the polluted coded packets. The analytical derivation and numerical results of

the probability of decoding error, average delay, and average throughput for the proposed

schemes and other compared schemes are provided in Section 3.5, Section 3.6, and Section

3.7, respectively. Finally, we conclude the chapter in Section 3.8.

3.2 System Model

We consider a two-hop wireless network in which S sources transmit independent

message packets x1, · · · ,xS to the destination via a relay as depicted in Fig. 3.1. Each

message packet

xs = {xs,1, · · · , xs,N}, s = 1, · · · , S (3.1)

is an (N,K) systematic Reed-Solomon codeword[13, 17] and each symbol xs,n is an

element of finite field GF (q).

+ 

𝐱1 𝐱𝑆 

Transmission 

Overhearing 

Figure 3.1 Two-hop network model with S sources, single relay, and single destination.

In phase 1, each source sends its message packet to the relay on its own orthogonal

channel. We assume that all message packets are correctly decoded by the relay. Due
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to the broadcast nature of wireless medium, the destination may overhear the message

packets that arrive directly from the source nodes (dotted lines in Fig. 3.1) possibly with

some errors. Let

rs = xs + es, s = 1, · · · , S (3.2)

denote the received packet at the destination where

es = {es,1, · · · , es,N}, s = 1, · · · , S (3.3)

is the channel error vector between the sth source and the destination before channel

decoding. The channel between each source and the destination is modeled by q-ary

symmetric channel with crossover probability p, i.e.,

P (es,n = i) =


1− p, i = 0

p
q−1

, i = 1, · · · , q − 1

(3.4)

where es,n ∈ GF (q) is the nth symbol of es. After channel decoding, the correctness of

the decoded word x̂s is examined by CRC (Cyclic Redundancy Check) code[15] which

is attached to xs. We assume that CRC check always detects the presence of decoding

error. Then, the destination stores

ys =


xs, if x̂s = xs

rs, if x̂s 6= xs

(3.5)

In phase 2, the relay combines the received packets to produce a coded packet

tr =
S∑
s=1

cr,sxs, r = 1, · · · , R (3.6)

where the coefficients {cr,s} are randomly selected from nonzero elements of finite field

GF (q). We assume that the field size q is sufficiently large, so that coded packets are

linearly independent with probability close to one[2, 3, 12]. We consider the scenario

where the malicious adversary may access the relay and modify tr into

pr =
S∑
s=1

cr,sxs + fr, r = 1, · · · , R (3.7)
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where fr is the falsely injected packet that captures the modification on the rth coded

packet. The modified packet pr is then sent to the destination. We assume that the

relay-destination channel is error-free.

Let Λ be a random variable denoting the number of incorrectly channel-decoded

message packets at the destination during phase 1. i.e.,

Λ =
∣∣∣{s | ys 6= xs, s = 1, · · · , S}

∣∣∣ (3.8)

where | · | denotes the cardinality (i.e., the number of elements) of a set.

If Λ = 0, the destination does not need coded packets which are transmitted from the

relay during phase 2, because it already obtained all correct message packets x1, · · · ,xS

during phase 1. If Λ > 0, the destination needs S linearly independent packets consisting

of all S − Λ correctly channel-decoded message packets during phase 1 and Λ coded

packets which are chosen from all R coded packets received during phase 2, in order to

find the reconstructed message packets x̂1, · · · , x̂S given by

x̂1

...

x̂S


=



b(1)

...

b(S−Λ)

c[1]

...

c[Λ]



−1 

y(1)

...

y(S−Λ)

p[1]

...

p[Λ]


(3.9)

=



x1

...

xS


+



b(1)

...

b(S−Λ)

c[1]

...

c[Λ]



−1 

0

...

0

f[1]

...

f[Λ]


(3.10)
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where (1), · · · , (S − Λ) ∈ {1, · · · , S} are the indices of the successfully channel-decoded

message packets during phase 1, while [1], · · · , [Λ] ∈ {1, · · · , R} are the indices of selected

coded packets from p1, · · · ,pR. Note that how to select Λ coded packets from R coded

packets depends on the selection rule of the utilized scheme, which is described in the

section 3.3. A length-S vector c[r] = {c[r],1, · · · , c[r],S} is the coefficient vector associated

with the coded packet p[r], while b(j) is a unit vector having all zeros but unique 1 at

the (j)th element. For example, in the case of S = 3 and R = 5, if we assume that y1

and y3 are correctly channel-decoded and the destination selects p2 from coded packets

p1, · · · ,p5, the reconstructed message packets x̂1, · · · , x̂S are given by
x̂1

x̂2

x̂3

 =


b(1)

b(2)

c[1]


−1 

y(1)

y(2)

p[1]

 (3.11)

=


1 0 0

0 0 1

c2,1 c2,2 c2,3


−1 

y1

y3

p2

 (3.12)

=


x1

x2

x3

+


1 0 0

0 0 1

c2,1 c2,2 c2,3


−1 

0

0

f2

 (3.13)

where Λ = 1, y(1) = y1 = x1, y(2) = y3 = x3, p[1] = p2 =
∑3

s=1 c2,sxs + f2, b(1) = b1 =

{1, 0, 0}, b(2) = b3 = {0, 0, 1}, and c[1] = c2 = {c2,1, c2,2, c2,3}.

From above description, we define that decoding is successful,

1. when Λ = 0.

2. when Λ > 0, Λ coded packets are selected, and all S reconstructed message packets
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are equal to all S original message packets that sources sent. i.e.,
x̂1

...

x̂S

 =


x1

...

xS

 (3.14)

In Appendix C, we prove that (3.14) is equivalent to f[1] = 0, · · · , f[Λ] = 0, which denotes

that all Λ coded packets which are determined to be unpolluted are actually unpolluted.

Therefore, decoding is failed,

1. when Λ > 0 and less than Λ coded packets are selected.

2. when Λ > 0, Λ coded packets are selected, and at least one of Λ selected coded

packets is polluted.

3.3 Proposed Detection Schemes

In this section, we describe two proposed schemes to detect the polluted packets.

3.3.1 Scheme I

Upon receiving a coded packet during phase 2, the destination checks if it is linearly

independent with the successfully received message packets y(1), · · · ,y(S−Λ) during phase

1, and the previously selected coded packets. If not, it is discarded. If so, the destination

checks if the coded packet is polluted or not, by the detection scheme described below.

If it is determined to be unpolluted, it is selected. As soon as the destination selects Λ

coded packets, it stops receiving the coded packet and recovers message packets based

on S − Λ message packets y(1), · · · ,y(S−Λ) and Λ selected coded packets p[1], · · · ,p[Λ].

If the number of selected coded packets is less than Λ by the end of phase 2, then the

decoding fails.
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Given y1, · · · ,yS and pr, a sufficient statistic for fr is

zr = pr −
S∑
s=1

cr,sys (3.15)

=
S∑
s=1

cr,sxs + fr −
S∑
s=1

cr,s (xs + ės) (3.16)

= fr−
S∑
s=1

cr,sės︸ ︷︷ ︸
gr

(3.17)

where

ės =


0, if x̂s = xs

es, if x̂s 6= xs

(3.18)

That is, zr contains all the information necessary to make a decision on fr given y1, · · · ,yS

and pr. This follows from the equality I(fr;y1, · · · ,yS) = I(fr; zr) which is proved in

Appendix D.

The Hamming weight of zr is given by

WH(zr) = WH(fr + gr) (3.19)

where

gr = −
S∑
s=1

cr,sės. (3.20)

Since it is likely that WH(zr) with fr = 0 is smaller than that with fr 6= 0, a coded packet

with smaller WH(zr) is more likely to be unpolluted. Based on this observation, the coded

packet is regarded as unpolluted if WH(zr) is less than or equal to the predetermined

threshold η and polluted otherwise. i.e.,

WH(zr)
Ĥ0

Q
Ĥ1

η (3.21)

where Ĥ0 and Ĥ1 denotes that the coded packet is detected as unpolluted and polluted,

respectively. By exploiting p and Λ = λ that the destination observes at the end of phase
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1, the threshold η is given by

η =
E[WH(gr)]p,λ + E[WH(fr + gr)]p,λ

2
(3.22)

where

E[WH(gr)]p,λ =
N∑
g=0

g · P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

(3.23)

denotes the expected value of WH(zr) of an unpolluted coded packet given p and λ, and

E[WH(fr + gr)]p,λ =
N∑
j=0

N∑
g=0

j · P (WH(fr + gr) = j|fr 6= 0, G = g)︸ ︷︷ ︸
(3.59)

·P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

(3.24)

denotes the expected value of WH(zr) of a polluted coded packet given p and λ with

the assumption that WH(fr) is equal to dmin and those dmin nonzero symbols in fr are

randomly located. P (G = g|Λ = λ) and P (WH(fr + gr) = j|fr 6= 0, G = g) are derived

in Section 3.5.

3.3.2 Scheme II

Basic idea of the proposed scheme II is to select linearly independent coded packets

having the smallest WH(zr)’s from all R coded packets. After all R coded packets are

received, the destination finds WH(z1), · · · ,WH(zR) by (3.15). Then, it checks if the

coded packet having the smallest WH(zr) is linearly independent with the S−Λ message

packets y(1), · · · ,y(S−Λ) which are successfully received during phase 1. If so, the coded

packet is selected. Otherwise, it is discarded. Suppose that it is selected. Then, the

destination checks if the coded packet having the second smallest WH(zr) is linearly

independent with the S − Λ message packets and the one previously selected coded

packet. If so, it is selected, and so on. If multiple coded packets have the same WH(zr)’s,

they are checked in random order. If Λ coded packets are selected until all R coded

packets are checked, the destination tries to reconstruct all message packets with them

and S − Λ successfully received message packets. Otherwise, decoding fails.



www.manaraa.com

37

3.4 False Injection Vector

In this section, we describe how the attacker generates the false injection vector fr

which is added to the true coded packet tr as shown in (3.7). We assume that the attacker

has whole knowledge about the proposed schemes described in Section 3.3. The attacker

wants to maximize the probability that polluted coded packets are not detected (i.e.,

misdetection) thus selected for decoding (i.e., included among p[1], · · · ,p[Λ] in (3.9)),

thereby maximizing the probability of decoding error. There are three conditions that

fr needs to meet, in order to maximize the probability of misdetection.

1. The true coded packet tr in (3.7) is a codeword because it is a linear combination of

codewords x1, · · · ,xS. Since relay-to-destination channel is error-free as assumed

in section 3.2 and we assume that the destination knows it, the received (polluted)

coded packet pr is suspicious to the destination if it is not a codeword. Hence,

the attacker makes pr a different codeword from tr by adding another nonzero

codeword fr to tr. Therefore, fr must be a nonzero codeword.

2. We assume that the attacker cannot see the value of gr in (3.17), although it knows

detection principles of the proposed schemes. Therefore, the attacker cannot find

a certain fr that cancels out gr and results in WH(fr + gr) < WH(gr). Hence,

the attacker makes WH(fr) as small as possible, because the smaller WH(fr) causes

the higher probability of WH(fr + gr) = WH(gr), where the destination cannot

distinguish the polluted coded packets from unpolluted coded packets. Hence,

the attacker selects a nonzero codeword fr with the smallest Hamming weight,

dmin = N −K + 1.

3. We also assume that the attacker cannot know the positions of nonzero symbols in

gr. Thus, the attacker cannot find the positions of nonzero symbols in fr causing

the smallest WH(fr + gr). Hence, nonzero symbols in fr are randomly located.
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From above conditions, fr should be a codeword having dmin nonzero symbols which

are randomly located among N symbols. By [23] (Theorem 8-5 at page 189), for any

combinations of dmin out of N coordinates in a MDS(Maximum Distance Separable)

codeword, there exist q − 1 codewords each of which has dmin nonzero symbols only at

those coordinates. Therefore, it is theoretically feasible to find such a codeword. In order

to generate it, the attacker repeats following steps for every polluted coded packet.

1. Randomly determine dmin coordinates among 1, · · · , N .

2. Select one of dmin-weight codewords having nonzero symbols at those coordinates.

3.5 Probability of Decoding Error

In this section, we derive the probability of decoding error for the two proposed

schemes, the random selection scheme, and the cryptographic scheme, averaged over Λ

which denotes the number of unsuccessfully channel-decoded message packets in phase

1. According to the definition of decoding success given in Section 3.2, the conditional

probability of decoding success given Λ = λ is given by

P (decoding success|Λ = λ)

=


1, if λ = 0

P (Select Λ coded packets︸ ︷︷ ︸
F̂Λ

,Those are all unpolluted︸ ︷︷ ︸
FΛ

|Λ = λ), if λ > 0
(3.25)

For brief representation, let F̂Λ and FΛ be an event that Λ coded packets are selected for

decoding and an event that all those coded packets are actually unpolluted, respectively.
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Then, the probability of decoding error is given by

PE = 1−
S∑
λ=0

P (decoding success|Λ = λ) · P (Λ = λ) (3.26)

= 1− P (Λ = 0)−
S∑
λ=1

P (F̂Λ,FΛ|Λ = λ) · P (Λ = λ) (3.27)

= 1− P (Λ = 0)−
S∑
λ=1

P (FΛ|F̂Λ,Λ = λ) · P (F̂Λ|Λ = λ) · P (Λ = λ) (3.28)

where

P (Λ = λ) =

(
S

λ

)
P λ
e (1− Pe)S−λ (3.29)

and

Pe =
N∑

j=t+1

(
N

j

)
pj(1− p)N−j (3.30)

is the probability that an overheard message packet is decoded incorrectly, where t =⌊
dmin−1

2

⌋
=
⌊
N−K

2

⌋
is the error correction capability of Reed-Solomon code [17].

3.5.1 Random Selection

Random selection scheme selects the first Λ linearly independent coded packets. Since

the field size q is sufficiently large, each coded packet is innovative. Therefore, the

conditional probability that Λ coded packets are selected given Λ = λ is given by

P (F̂Λ|Λ = λ) =


1, 0 < λ ≤ R

0, otherwise.

(3.31)

The conditional probability that all Λ selected coded packets are actually unpolluted

given Λ = λ is given by

P (FΛ|F̂Λ,Λ = λ) = (1− pf )λ. (3.32)
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It follows from (3.28), (3.31), and (3.32) that the average probability of decoding error

is given by

PE = 1− P (Λ = 0)−
min(S,R)∑
λ=1

(1− pf )λ · P (Λ = λ) (3.33)

= 1−
min(S,R)∑
λ=0

(1− pf )λ · P (Λ = λ). (3.34)

If S ≤ R, then

PE = 1−
S∑
λ=0

(
S

λ

)
{(1− pf )Pe}λ (1− Pe)S−λ (3.35)

(a)
= 1− (1− pf · Pe)S (3.36)

where (a) is because
∑c

j=0

(
c
j

)
αjβc−j = (α + β)c by [18].

3.5.2 Cryptographic Scheme

We assume that the cryptographic scheme perfectly detects the polluted coded pack-

ets. That is,

P (FΛ|F̂Λ,Λ = λ) = 1. (3.37)

If we let Rf denote the number of polluted coded packets, then the conditional probability

that Λ coded packets are selected for decoding given Λ = λ is given by

P (F̂Λ|Λ = λ) =
R∑

rf=0

P (F̂Λ|Rf = rf ,Λ = λ) · P (Rf = rf |Λ = λ) (3.38)

where

P (F̂Λ|Rf = rf ,Λ = λ) =


1, 0 < λ ≤ R− rf

0, otherwise

(3.39)

is the conditional probability that Λ coded packets are selected given Rf = rf and Λ = λ,

and

P (Rf = rf |Λ = λ) = P (Rf = rf ) (3.40)

=

(
R

rf

)
p
rf
f (1− pf )R−rf . (3.41)



www.manaraa.com

41

Therefore, it follows from (3.38) that the probability of decoding error is given by

PE = 1−
R∑

rf=0

min(S,R−rf )∑
λ=0

P (Rf = rf |Λ = λ) · P (Λ = λ). (3.42)

3.5.3 Scheme I

The joint conditional probability P (F̂Λ,FΛ|Λ = λ) can be expressed as

P (F̂Λ,FΛ|Λ = λ)

=
N∑
g=0

P (FΛ, F̂Λ, G = g|Λ = λ) (3.43)

=
N∑
g=0

P (FΛ|F̂Λ, G = g,Λ = λ)︸ ︷︷ ︸
(3.60)

·P (F̂Λ|G = g,Λ = λ)︸ ︷︷ ︸
(3.51)

·P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

(3.44)

where G denotes the number of nonzero column vectors in

Ė =


ė1

...

ėS

 =


ė1,1 · · · ė1,N

...
. . .

...

ėS,1 · · · ėS,N

 . (3.45)

For sufficiently large q, G is close to WH(gr) for r = 1, · · · , R because sum of two nonzero

symbols is nonzero with high probability. If we let Gλ be G given Λ = λ, the conditional

probability of G = g given Λ = λ is recursively given by

P (G = g|Λ = λ)

= P (Gλ = g) (3.46)

=


P (G1 = g), if λ = 1

N∑
gλ−1=0

N∑
g1=0

P (Gλ = g|Gλ−1 = gλ−1, G1 = g1) · P (Gλ−1 = gλ−1) · P (G1 = g1), if λ > 1

(3.47)
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where

P (G1 = g1) = P (WH(ės) = g1|ės 6= 0) (3.48)

=


(
N
g1

)
pg1(1− p)N−g1∑N

j=t+1

(
N
j

)
pj(1− p)N−j

, g1 > t

0, g1 ≤ t

(3.49)

The conditional probability of Gλ = g given Gλ−1 = gλ−1 and G1 = g1 is given by

P (Gλ = g|Gλ−1 = gλ−1, G1 = g1)

=


(

gλ−1

gλ−1+g1−g

)(
N−gλ−1

g−gλ−1

)(
N
g1

) , if max(gλ−1, g1) ≤ g ≤ min(N, gλ−1 + g1)

0, otherwise

(3.50)

Let ė<1>, ė<2>, · · · , ė<λ> denote the nonzero error vectors given Λ = λ in Ė. In order

to have Gλ = g, g − gλ−1 nonzero column vectors of


ė<2>

...

ė<λ>

 should not overlap with

the nonzero symbols of ė<1>, while gλ−1− (g− g1) nonzero column vectors of


ė<2>

...

ė<λ>


should overlap with the nonzero symbols of ė<1>. The probability of such that is given

by (3.50). Fig.3.2 shows an example of Ė in the case of g1 = 3 and gλ−1 = 3.

The conditional probability that Λ coded packets are selected given G = g and Λ = λ

is given by

P (F̂Λ|G = g,Λ = λ)

=


R−λ∑
c=0

(
c+ λ− 1

c

)
P (Ĥ1|G = g)cP (Ĥ0|G = g)λ, if 0 < λ ≤ R

0, otherwise

(3.51)
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λ − 1 rows

1 rows

𝑁

𝑔1 = 3

𝑔λ−1 = 3

Figure 3.2 An example of Ė

where c is the number of coded packets that are decided as polluted until the destination

selects the Λth coded packet, and

P (Ĥ1|G = g) = PFA(g)(1− pf ) + (1− PMD(g))pf (3.52)

is the conditional probability that each coded packet is decided as polluted given G = g.

In (3.52),

PFA(g) = P (WH(fr + gr) > η|fr = 0, G = g) (3.53)

= P (WH(gr) > η|G = g) (3.54)

is the conditional probability of false alarm given G = g. Since WH(gr) = g, we obtain

PFA(g) =


0, if g ≤ η

1, if g > η

(3.55)

Similarly, the conditional probability of misdetection given G = g is given by

PMD(g) = P (WH(fr + gr) ≤ η|fr 6= 0, G = g) (3.56)

=

bηc∑
j=0

P (WH(fr + gr) = j|fr 6= 0, G = g) (3.57)

=

min(bηc,g+dmin)∑
j=max(dmin,g)

(
g

g+dmin−j

)(
N−g
j−g

)(
N

dmin

) . (3.58)
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The conditional probability of WH(fr + gr) = j given fr 6= 0 and G = g is given by

P (WH(fr + gr) = j|fr 6= 0, G = g)

=


(

g
g+dmin−j

)(
N−g
j−g

)(
N

dmin

) , max(dmin, g) ≤ j ≤ min(N, g + dmin)

0, otherwise

(3.59)

which follows from the same argument used in obtaining (3.50).

Next, the conditional probability that all selected coded packets are actually unpol-

luted given G = g, Λ = λ is given by

P (FΛ|F̂Λ, G = g,Λ = λ) = P (H0|Ĥ0, G = g)λ. (3.60)

Therefore, it follows from (3.27), (3.44), (3.47), (3.51), and (3.60) that the average

probability of decoding error is given by

PE = 1− P (Λ = 0)−
min(S,R)∑
λ=1

N∑
g=0

R−λ∑
c=0

(
c+ λ− 1

c

)
P (Ĥ1|G = g)cP (Ĥ0, H0|G = g)λ

· P (G = g|Λ = λ) · P (Λ = λ) (3.61)

where

P (Ĥ0, H0|G = g) = P (Ĥ0|H0, G = g)P (H0|G = g) (3.62)

= (1− PFA(g))(1− pf ). (3.63)

3.5.3.1 Scheme I with Reference Threshold ηopt

As explained in Section 3.3, the destination finds the threshold η by substituting

observed p and Λ = λ into (3.22). If we assume that the destination knows the value of

pf , it can finds the reference threshold

ηopt = arg max
η′∈{0,··· ,N}

P (decoding success|Λ = λ) (3.64)

by comparing P (decoding success|Λ = λ)’s for η
′
= 0, 1, · · · , N . Although this might be

practically infeasible because it requires knowledge of pf , ηopt could be a good reference

to compare with η. Fig.3.3 and Fig.3.4 show that η is close to ηopt.
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3.5.4 Scheme II

The scheme II selects coded packets having the lowest WH(zr)’s. Therefore, as long

as Λ ≤ R, the destination can always choose Λ packets that are potentially unpolluted.

Hence, the conditional probability that the destination selects λ coded packets given

Λ = λ is

P (F̂Λ|Λ = λ) =


1, 0 < λ ≤ R

0, otherwise

(3.65)

Let Γ be the number of polluted packets in which positions of nonzero symbols of fr and

gr are completely overlapped. Then, the conditional probability that the selected coded

packets are actually unpolluted given that they are selected and Λ = λ is given by

P (FΛ|F̂Λ,Λ = λ) =
N∑
g=0

R∑
rf=0

rf∑
γ=0

P (FΛ,Γ = γ,Rf = rf , G = g|F̂Λ,Λ = λ) (3.66)

=
N∑
g=0

R∑
rf=0

rf∑
γ=0

P (FΛ|Γ = γ,Rf = rf , G = g, F̂Λ,Λ = λ)︸ ︷︷ ︸
(3.68)

· P (Γ = γ,Rf = rf |G = g, F̂Λ,Λ = λ)︸ ︷︷ ︸
(3.70)

·P (G = g|F̂Λ,Λ = λ)︸ ︷︷ ︸
P (G=g|Λ=λ)=(3.47)

. (3.67)

Since WH(zr|fr 6= 0) ≥ WH(zr|fr = 0), the destination will select Λ packets randomly

from R−Rf + Γ coded packets where R−Rf packets are unpolluted and Γ packets are

polluted. The conditional probability that all selected packets are unpolluted given

Γ = γ,Rf = rf , G = g, F̂Λ,Λ = λ is given by

P (FΛ|Γ = γ,Rf = rf , G = g, F̂Λ,Λ = λ) =


(γ0)(

R−rf
λ )

(R−rf+γ

λ )
, λ ≤ R− rf

0, otherwise

(3.68)
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The conditional probability of Γ = γ and Rf = rf given G = g, F̂Λ, Λ = λ is given by

P (Γ = γ,Rf = rf |G = g, F̂Λ,Λ = λ)

= P (Γ = γ|Rf = rf , G = g) · P (Rf = rf ) (3.69)

=

(
rf
γ

)
POL(g)γ(1− POL(g))rf−γ · P (Rf = rf ) (3.70)

where

POL(g) = P (WH(fr + gr) = g|fr 6= 0, G = g) (3.71)

=


( g
dmin

)(N−g0 )
( N
dmin

)
, g ≥ dmin,

0, g < dmin

(3.72)

is the probability that positions of nonzero symbols of fr and gr are overlapped. There-

fore, it follows from (3.28) and (3.65)-(3.72) that the probability of decoding error is

given by

PE = 1− P (Λ = 0)−
N∑
g=0

R∑
rf=0

rf∑
γ=0

min(S,R−rf )∑
λ=1

(
R−rf
λ

)(
R−rf+γ

λ

) · (rf
γ

)
POL(g)γ(1− POL(g))rf−γ

· P (Rf = rf ) · P (G = g|Λ = λ) · P (Λ = λ). (3.73)

3.5.5 Asymptotic Analysis for Large N

If we assume that N and K get large enough with fixed rate K
N

, then

lim
N,K→∞

WH(es) = Np (3.74)

by the law of large numbers [16]. Therefore, Pe in (3.30) goes to zero if Np ≤ t and one

if Np > t. i.e.,

lim
N,K→∞

Pe =


0, if p ≤ t

N

1, if p > t
N

(3.75)
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Therefore, P (Λ = λ) in (3.29) approaches as follows.

lim
N,K→∞

P (Λ = λ) =


1, if p ≤ t

N
and λ = 0

1, if p > t
N

and λ = S

0, otherwise

(3.76)

This denotes that Λ is always zero when p ≤ t
N

and S when p > t
N

, respectively. From

(3.27) and (3.76), we note that PE goes to zero for p ≤ t
N

regardless of the utilized

scheme, because all S message packets are correctly received at the destination during

phase 1. i.e.,

lim
N,K→∞

PE = 0, if p ≤ t

N
(3.77)

Therefore, we find lim
N,K→∞

PE for p > t
N

for each scheme in the remaining part of this

subsection.

3.5.5.1 Random Selection

From (3.34) and (3.75), we obtain

lim
N,K→∞

PE =


1, if S > R

1− (1− pf )S︸ ︷︷ ︸
(a)

, if S ≤ R
(3.78)

where (a) denotes that probability that at least one of S coded packets are polluted.

3.5.5.2 Cryptographic Scheme

From (3.42) and (3.76), we obtain

lim
N,K→∞

PE =



1, if S > R

1−
R−S∑
rf=0

P (Rf = rf )︸ ︷︷ ︸
(3.41)︸ ︷︷ ︸

(b)

, if S ≤ R (3.79)
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where (b) denotes the probability that the number of polluted coded packets are at most

R− S.

3.5.5.3 Scheme I

From (3.74), we note that every row vector in Ė has Np nonzero symbols which are

randomly located. Hence, the number of nonzero columns in Ė exists between Np and

min(N,SNp). Therefore, from (3.47), the conditional probability of G = g given Λ = S

is given by

lim
N,K→∞

P (G = g|Λ = S) = lim
N,K→∞

P (GS = g) (3.80)

=
N∑

g1=0

· · ·
N∑

gS−1=0

lim
N,K→∞

P (GS = g,GS−1 = gS−1, · · ·G1 = g1) (3.81)

=

min(N,2Np)∑
g2=Np

min(N,Np+g2)∑
g3=g2

· · ·
min(N,Np+gS−2)∑

gS−1=gS−2

{(
Np

2Np−g2

)(
N−Np
g2−Np

)(
N
Np

) ·
(

g2

g2−Np−g3

)(
N−g2

g3−g2

)(
N
Np

) · · ·

· · ·

(
gS−1

gS−1−Np−g

)(
N−gS−1

g−gS−1

)(
N
Np

) }
(3.82)

where Gi denotes the nonzero columns of


ė1

...

ėi

 and

lim
N,K→∞

P (GS = g,GS−1 = gS−1, · · ·G1 = g1)

= lim
N,K→∞

P (GS = g|GS−1 = gS−1, · · ·G1 = g1) · · ·

· · · lim
N,K→∞

P (G2 = g2|G1 = g1) lim
N,K→∞

P (G1 = g1) (3.83)

and

lim
N,K→∞

P (G1 = g1) =


1, if g1 = Np

0, otherwise

(3.84)
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denotes that every row vector of Ė has Np nonzero symbols, and

lim
N,K→∞

P (Gi = gi|Gi−1 = gi−1, · · · , G1 = g1)

= lim
N,K→∞

P (Gi = gi|Gi−1 = gi−1) (3.85)

=


( gi−1
gi−1+Np−gi

)(N−gi−1
gi−gi−1

)

( NNp)
, if gi−1 ≤ gi ≤ min(N,Np+ gi−1)

0, otherwise

(3.86)

denotes the conditional probability that


ė1

...

ėi

 has gi nonzero columns given that


ė1

...

ėi−1

 has gi−1 nonzero columns.

Therefore, from above equations, the probability of decoding error of the scheme I in

(3.61) is simplified to

lim
N,K→∞

PE

=


1−

min(N,SNp)∑
g=Np

R−S∑
c=0

(
c+ S − 1

c

)
P (Ĥ1|G = g)︸ ︷︷ ︸

(3.52)

c
P (Ĥ0, H0|G = g)︸ ︷︷ ︸

(3.63)

S
P (G = g|Λ = S)︸ ︷︷ ︸

(3.82)

, if S ≤ R

0, if S > R

(3.87)

3.5.5.4 Scheme II

From (3.76) and (3.73), the probability of decoding error of the scheme II is simplified

to

lim
N,K→∞

PE = 0 (3.88)
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for S > R, and

lim
N,K→∞

PE = 1−
min(N,SNp)∑

g=Np

R−S∑
rf=0

rf∑
γ=0

(
R−rf
S

)(
R−rf+γ

S

)(rf
γ

)
POL(g)γ(1− POL(g))rf−γ

· P (Rf = rf )P (G = g|Λ = S)︸ ︷︷ ︸
(3.82)

(3.89)

for S ≤ R.

3.5.6 Numerical Results

In the legend of each plot, ‘ana’ and ‘sim’ denotes analysis and simulation, respec-

tively. Fig.3.5 shows the plot of the average probability of decoding error PE versus

the symbol error probability p for the case of q = 256, S = 5, R = 10, pf = 0.3, and

(N = 16, K = 14) 8bits shortened RS code. We can see that PE of every scheme

increases with increasing p. This is because larger p causes smaller probability that

all message packets are correctly channel-decoded. Besides this reason, the proposed

schemes have another reason. Since larger p statistically causes larger WH(gr) by (3.47)-

(3.50), the probability of WH(fr + gr) = WH(gr) (i.e., the probability that all nonzero

symbols of fr are completely overlapped with nonzero symbols of gr) increases. As a re-

sult, it gets harder that unpolluted coded packets are distinguished from polluted coded

packets. We can see that PE of the proposed scheme I with η is smaller than that of

the random selection scheme, and is close to that of the proposed scheme I with ηopt,

in the practical range of p ≤ 0.2. This denotes that the polluted coded packets are

detected well by η for the practically small p. We also notice that PE of the proposed

scheme II is much smaller than that of the proposed scheme I. This denotes that the

proposed scheme II minimizes the case that polluted coded packets are mis-detected, by

comparing all coded packets at the cost of full (R) delay. Fig.3.6 shows the plot of the

average probability of decoding error PE versus the symbol error probability p for the

case of q = 256, S = 5, R = 10, pf = 0.3, and (N = 255, K = 223) 8bits (not shortened)
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RS code. Only difference from Fig.3.5 is N and K. We can see the same trend with

Fig.3.5 in this figure.

Fig.3.7 shows the plot of the average probability of decoding error PE versus the

probability of pollution attack pf for the case of q = 256, p = 0.1, S = 5, R = 10, and

(N = 16, K = 14) 8bits shortened RS code. We can see that PE of every scheme increases

with increasing pf . We also can see that PE of the proposed scheme II is much lower than

that of the proposed scheme I. As described earlier, this benefit of the proposed scheme II

over the proposed scheme I comes from the cost that the proposed scheme II compares all

R coded packets. Fig.3.8 shows the plot for the case of q = 256, p = 0.1, S = 5, R = 10,

and (N = 255, K = 223) 8bits RS code. In this figure, PE of the proposed scheme II

approaches that of the cryptographic scheme.

Fig.3.9 shows the plot of the average probability of decoding error PE versus Hamming

weight of false injection vectors WH(fr) for the case of q = 256, p = 0.1, S = 5, R =

10, pf = 0.3, and (N = 16, K = 14) 8bits shortened RS code. We can see that PE’s of

the random selection scheme and the cryptographic scheme are not functions of WH(fr)

as given by (3.34) and (3.42), respectively. We also can see that PE’s of the proposed

scheme I with η, with ηopt, and the proposed scheme II decay as WH(fr) increases.

This is intuitively because larger WH(fr) results in the lower probability that a polluted

coded packet is mis-detected as an unpolluted coded packet, by (3.59) and (3.72). In

other words, to the proposed schemes, larger WH(fr) causes that polluted coded packets

are more easily distinguished from unpolluted coded packets. We also notice that the

proposed scheme I with η has PE close to that of the proposed scheme I with ηopt and

that the proposed scheme II has the much lower PE than the proposed scheme I. Fig.3.10

is for the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, and (N = 16, K = 14) 8bits

(not shortened) RS code and has the same trend with Fig.3.9.

Fig.3.11 shows the plot of the average probability of decoding error PE versus message

length K for the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3 and (N = 16, K) 8bits
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shortened RS code, while Fig.3.12 is for the case of (N = 255, K) 8bits RS code. We

can see that PE’s of all schemes increase with the increasing K. This is because error

correction capability t = bN−K
2
c decreases as K increases. For proposed schemes, this

is also because Hamming weight of false injection vector WH(fr) = dmin decays as K

increases.
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Figure 3.5 The average probability of decoding error PE versus the symbol error prob-
ability p; q = 256, S = 5, R = 10, pf = 0.3, N = 16, K = 14.
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Figure 3.6 The average probability of decoding error PE versus the symbol error prob-
ability p; q = 256, S = 5, R = 10, pf = 0.3, N = 255, K = 223.



www.manaraa.com

57

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

q=256, S=5, R=10, p=0.1, (16, 14) 8bits RS code

Probability of Pollution Attack, p
f

P
ro

ba
bi

lit
y 

of
 D

ec
od

in
g 

E
rr

or
, P

E

 

 

ana, random selection
ana, proposed I with η
ana, proposed I with η

opt

ana, proposed II
ana, cryptographic
sim, random selection
sim, proposed I with η
sim, proposed I with η

opt

sim, proposed II
sim, cryptographic

Figure 3.7 The average probability of decoding error PE versus the probability of pol-
lution attack pf ; q = 256, p = 0.1, S = 5, R = 10, N = 16, K = 14.
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Figure 3.8 The average probability of decoding error PE versus the probability of pol-
lution attack pf ; q = 256, p = 0.1, S = 5, R = 10, N = 255, K = 223.
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Figure 3.10 The average probability of decoding error PE ver-
sus Hamming weight of false injection vector WH(fr);
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255, K = 223.
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Figure 3.11 The average probability of decoding error PE versus message length K;
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Figure 3.12 The average probability of decoding error PE versus message length K;
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255.
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3.6 Average Delay

We define the delay ∆ as the number of received coded packets before the decoding

starts, regardless of whether the decoding is successful or not. Therefore, the average

delay is given by

E[∆] =
S∑
λ=0

R∑
δ=0

δ · P (∆ = δ|Λ = λ) · P (Λ = λ) (3.90)

=
S∑
λ=1

R∑
δ=0

δ · P (∆ = δ|Λ = λ) · P (Λ = λ) (3.91)

where (3.91) follows from

P (∆ = 0|Λ = 0) = 1. (3.92)

If S < R, then

E[∆] =
S∑
λ=1

{
R−1∑
δ=λ

δ · P (∆ = δ|Λ = λ) +R ·

(
1−

R−1∑
δ=λ

P (∆ = δ|Λ = λ)

)}
· P (Λ = λ)

(3.93)

=
S∑
λ=1

{
R−

R−1∑
δ=λ

(R− δ) · P (∆ = δ|Λ = λ)

}
· P (Λ = λ) (3.94)

= R(1− P (Λ = 0))−
S∑
λ=1

R−1∑
δ=λ

(R− δ) · P (∆ = δ|Λ = λ) · P (Λ = λ) (3.95)

where (3.93) follows from

P (∆ = 0|Λ = λ) = 0 for δ ≤ λ− 1. (3.96)
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If S ≥ R,

E[∆] =
R−1∑
λ=1

R∑
δ=0

δ · P (∆ = δ|Λ = λ) · P (Λ = λ) +
S∑

λ=R

R∑
δ=0

δ · P (∆ = δ|Λ = λ) · P (Λ = λ)

(3.97)

=
R−1∑
λ=1

R∑
δ=λ

δ · P (∆ = δ|Λ = λ) · P (Λ = λ) +R
S∑

λ=R

P (Λ = λ) (3.98)

=
R−1∑
λ=1

{
R−

R−1∑
δ=λ

(R− δ)P (∆ = δ|Λ = λ)

}
· P (Λ = λ) +R

S∑
λ=R

P (Λ = λ) (3.99)

= R(1− P (Λ = 0))−
R−1∑
λ=1

R−1∑
δ=λ

(R− δ) · P (∆ = δ|Λ = λ) · P (Λ = λ) (3.100)

where (3.98) follows from

P (∆ = δ|Λ = λ) = 0 for δ ≤ R− 1, λ ≥ R (3.101)

and

P (∆ = R|Λ = λ) = 1 for λ ≥ R (3.102)

and (3.99) follows from

R∑
δ=λ

P (∆ = δ|Λ = λ) = 1. (3.103)

Therefore, it follows from (3.95) and (3.100) that the average delay is given by

E[∆] = R(1− P (Λ = 0))−
min(S,R−1)∑

λ=1

R−1∑
δ=λ

(R− δ) · P (∆ = δ|Λ = λ) · P (Λ = λ) (3.104)

where P (Λ = λ) is given by (3.29).

3.6.1 Random Selection

Since the random selection scheme selects the first Λ coded packets, the conditional

distribution of ∆ given Λ = λ is given by

P (∆ = δ|Λ = λ) =


1, δ = λ

0, otherwise

(3.105)
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if λ ≤ R and

P (∆ = δ|Λ = λ) =


1, δ = R

0, δ < R

(3.106)

if λ > R. Then, it follows from (3.104), (3.105), and (3.106) that the average delay is

given by

E[∆] = R(1− P (Λ = 0))−
min(S,R−1)∑

λ=1

(R− λ) · P (Λ = λ) (3.107)

=


S∑
λ=1

λ · P (Λ = λ), if S < R

R−1∑
λ=1

λ · P (Λ = λ) +
S∑

λ=R

R · P (Λ = λ), if S ≥ R

(3.108)

=
S∑
λ=1

min(λ,R) · P (Λ = λ). (3.109)

3.6.2 Cryptographic Scheme

Since the cryptographic scheme is assumed to perfectly detect the presence of pollu-

tion attack, delay is equal to the number of received coded packets until Λth unpolluted

coded packet is received. Therefore, the conditional probability of ∆ given Λ = λ is

given by

P (∆ = δ|Λ = λ) =



1, δ = λ = 0(
δ − 1

δ − λ

)
P (H1)︸ ︷︷ ︸

pf

δ−λP (H0)︸ ︷︷ ︸
1−pf

λ, 1 ≤ λ ≤ δ

0, otherwise

(3.110)

if δ ≤ R− 1 and

P (∆ = R|Λ = λ) =



0, λ = 0

1−
R−1∑
d=λ

(
d− 1

d− λ

)
P (H1)d−λP (H0)λ, 1 ≤ λ ≤ R− 1

1, λ ≥ R

(3.111)
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Therefore, it follows from (3.104), (3.110), and (3.111) that the average delay is given by

E[∆] = R(1− P (Λ = 0))−
min(S,R−1)∑

λ=1

R−1∑
δ=λ

(R− δ) ·
(
δ − 1

δ − λ

)
pδ−λf (1− pf )λ · P (Λ = λ).

(3.112)

3.6.3 Scheme I

The conditional distribution of ∆ given Λ = λ is given by

P (∆ = δ|Λ = λ) =
N∑
g=0

P (∆ = δ,G = g|Λ = λ) (3.113)

=
N∑
g=0

P (∆ = δ|G = g,Λ = λ)︸ ︷︷ ︸
(3.115)

·P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

(3.114)

where G is the number of nonzero columns in Ė given by (3.45) and P (G = g|Λ = λ) is

given by (3.47). Similarly to (3.110), the conditional distribution of ∆ given G = g and

Λ = λ is given by

P (∆ = δ|G = g,Λ = λ)

=



1, if λ = δ = 0(
δ − 1

δ − λ

)
P (Ĥ1|G = g)︸ ︷︷ ︸

(3.52)

δ−λ
P (Ĥ0|G = g)︸ ︷︷ ︸

(3.117)

λ
, if 1 ≤ λ ≤ δ ≤ R− 1

1−
R−1∑
d=λ

(
d− 1

d− λ

)
P (Ĥ1|G = g)d−λP (Ĥ0|G = g)λ, if 1 ≤ λ ≤ δ = R

1, if δ = R < λ

0, otherwise

(3.115)

where P (Ĥ1|G = g) which denotes the conditional probability that a received coded

packet is decided as polluted given G = g is given by (3.52) and P (Ĥ0|G = g) is similarly

given by

P (Ĥ0|G = g) = 1− P (Ĥ1|G = g) (3.116)

= (1− PFA(g))(1− pf ) + PMD(g)pf . (3.117)
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Therefore, by (3.113)-(3.117) and (3.104), the average delay is given by

E[∆] = R(1− P (Λ = 0))−
min(S,R−1)∑

λ=1

R−1∑
δ=λ

N∑
g=0

(R− δ)

·
(
δ − 1

δ − λ

)
P (Ĥ1|G = g)δ−λP (Ĥ0|G = g)λ · P (G = g|Λ = λ) · P (Λ = λ). (3.118)

3.6.4 Scheme II

Since the proposed scheme II requires that all R coded packets are compared as

described in section 3.3, delay is always R when Λ ≥ 1. Therefore, the average delay is

given by

E[∆] = R(1− P (Λ = 0)) (3.119)

regardless of S > R or S ≤ R.

3.6.5 Asymptotic Analysis for Large N

In this subsection, we derive the average delay when N is large. When p ≤ t
N

, all S

message packets are correctly channel-decoded during phase 1 due to (3.76). Hence,

lim
N,K→∞

E[∆] = 0, if p ≤ t

N
(3.120)

regardless of the utilized scheme during phase 2. Hence, we present the average delay

for large N if p > t
N

in the remaining part of this subsection.

3.6.5.1 Random Selection

Following from (3.76) and (3.109) we obtain

lim
N,K→∞

E[∆] =


R, if S > R

S, if S ≤ R

(3.121)

= min(S,R). (3.122)
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3.6.5.2 Cryptographic Scheme

From (3.76) and (3.112), we obtain

lim
N,K→∞

E[∆] =


R, if S ≥ R

R−
R−1∑
δ=S

(R− δ)
(
δ − 1

δ − S

)
pδ−Sf (1− pf )S︸ ︷︷ ︸

(a)

, if S < R
(3.123)

where (a) is the probability that the δthly received coded packet is the Sth unpolluted

coded packet.

3.6.5.3 Scheme I

Following from (3.76) and (3.118), the average delay of the scheme I is simplified as

lim
N,K→∞

E[∆]

=


R, if S ≥ R

R−
R−1∑
δ=S

min(N,SNp)∑
g=Np

(R− δ)
(
δ − 1

δ − S

)
P (Ĥ1|G = g)δ−SP (Ĥ0|G = g)S︸ ︷︷ ︸

(b)

P (G = g|Λ = S)︸ ︷︷ ︸
(3.82)

, if S < R

(3.124)

where (b) denotes the probability that the δth coded packet is the Sthly selected coded

packet.

3.6.5.4 Scheme II

Since delay of the proposed scheme II is always R for Λ ≥ 1 as described in the

section 3.6, we obtain

lim
N,K→∞

E[∆] = R. (3.125)
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3.6.6 Numerical Results

Fig.3.13 shows the plot of the average delay E[∆] versus the symbol error probability

p for the case of q = 256, S = 5, R = 10, pf = 0.3, and (N = 16, K = 14) 8bits shortened

RS code, while Fig.3.14 is for the case of (N = 255, K = 223) 8bits (not shortened)

RS code. We can see that PE’s of the random selection scheme, the proposed scheme

II, and the cryptographic scheme increase as p increases. For the proposed scheme II,

this is because P (Λ = 0) decreases with increasing p, as shown by (3.119). For the

random selection scheme and the cryptographic scheme, this is because Λ increases with

increasing p. as shown in (3.109) and (3.112). We also see that E[∆] of the proposed I

with ηopt increases as p increases and turns into decreasing at a certain p and finally meets

E[∆] of the random selection scheme at large p. This is because of following reasons.

1. For small p, E[∆] increases as p increases because Λ increases, such as the random

selection scheme and the cryptographic scheme.

2. At a certain p, E[∆] stops increasing and starts decreasing. This is because larger

p causes the larger number of mis-detection.

3. At very large p, E[∆] meets that of the random selection scheme. This is because

so large p causes that WH(zr)’s of the polluted coded packets and the unpolluted

coded packets have the same value of N thus ηopt also becomes N . As a result, ηopt

cannot distinguish polluted coded packets from unpolluted coded packets. In other

words, every coded packet is detected as unpolluted, such as the random selection

scheme.

Fig.3.15 shows the plot of the average delay E[∆] versus the probability of pollution

attack pf for the case of q = 256, p = 0.1, S = 5, R = 10, and (N = 16, K = 14) 8bits

shortened RS code. We can see that E[∆]’s of the random selection and the proposed

scheme II do not differ as pf varies. This is because they are not functions of pf as
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shown in (3.109) and (3.119). On the other hand, we can see that E[∆]’s of the proposed

scheme I with η, with ηopt, and the cryptographic scheme increases as pf increases. We

also notice that lines of proposed scheme I with η and ηopt are close to that of the

cryptographic scheme. This denotes that they detect polluted coded packets with high

probability close to one. Fig.3.16 is for the case of (N = 255, K = 223) 8bits RS code

and shows the same trend.

Fig.3.17 shows the plot of the average delay E[∆] versus Hamming weight of false

injection vectors WH(fr) for the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3,

and (N = 16, K = 14) 8bits shortened RS code, while Fig.3.18 is for the case of (N =

255, K = 223) 8bits RS code. In both figures, we can see that E[∆]’s of the random

selection scheme, the cryptographic scheme, and the proposed scheme II are not functions

of WH(fr) as shown by (3.109), (3.112), and (3.119). On the other hand, we can see that

E[∆]’s of the proposed scheme I with η and with ηopt reduce to that of the cryptographic

scheme as WH(fr) increases. This is intuitively because polluted coded packets are more

easily distinguished with the larger WH(fr) thus the number of mis-detection decreases.

Fig.3.19 shows the plot of the average delay E[∆] versus message length K for the

case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3 and (N = 16, K) 8bits shortened RS

code, while Fig.3.20 shows the plot of the average delay E[∆] versus message length K

for the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3 and (N = 255, K) 8bits RS

code. In both figures, we can see that E[∆] increases as K increases.
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Figure 3.13 The average delay E[∆] versus the symbol error probability p;
q = 256, S = 5, R = 10, pf = 0.3, N = 16, K = 14.
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Figure 3.14 The average delay E[∆] versus the symbol error probability p;
q = 256, S = 5, R = 10, pf = 0.3, N = 255, K = 223.
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Figure 3.15 The average delay E[∆] versus the probability of pollution attack pf ;
q = 256, p = 0.1, S = 5, R = 10, N = 16, K = 14.



www.manaraa.com

74

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
4

5

6

7

8

9

10
q=256, S=5, R=10, p=0.1, (255, 223) 8bits RS code

Probability of Pollution Attack, p
f

A
ve

ra
ge

 D
el

ay
, E

[∆
]

 

 

ana, random selection
ana, proposed I with η

ana, proposed I with ηopt

ana, proposed II
ana, cryptographic

Figure 3.16 The average delay E[∆] versus the probability of pollution attack pf ;
q = 256, p = 0.1, S = 5, R = 10, N = 255, K = 223.
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Figure 3.17 The average delay E[∆] versus Hamming weight of false injection vector
WH(fr); q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 16, K = 14.
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Figure 3.18 The average delay E[∆] versus Hamming weight of false injection vector
WH(fr); q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255, K = 223.
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Figure 3.19 The average delay E[∆] versus message length K;
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 16.
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Figure 3.20 The average delay E[∆] versus message length K;
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255.
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3.7 Average Throughput

We define the throughput as the number of successfully recovered message packets

at the destination per packet transmission. Then, the average throughput is given by

W = P (Λ = 0) +
S∑
λ=1

R∑
δ=λ

(S − λ) + λPS(δ, λ)

S + δ
P (∆ = δ|Λ = λ)P (Λ = λ) (3.126)

for S ≤ R and

W = P (Λ = 0) +
R∑
λ=1

R∑
δ=λ

(S − λ) + λPS(δ, λ)

S + δ
P (∆ = δ|Λ = λ)P (Λ = λ)

+
S∑

λ=R+1

S − λ
S +R

P (Λ = λ) (3.127)

for S > R, where PS(δ, λ) denotes the probability of decoding success given ∆ = δ and

Λ = λ. We used P (∆ = δ|Λ = λ)’s derived for each scheme in (3.105), (3.106), (3.110),

(3.111), and (3.113) in Section 3.6.

3.7.1 Random Selection

Since random selection scheme chooses the first received Λ coded packets,

PS(δ, λ) =


(1− pf )λ, if λ = δ

0, otherwise

(3.128)

Therefore, by (3.105), (3.106), and (3.128), average throughput is given by

W =


S∑
λ=0

S − λ+ λ(1− pf )λ

S + λ
P (Λ = λ), if S ≤ R

R∑
λ=0

S − λ+ λ(1− pf )λ

S + λ
P (Λ = λ) +

S∑
λ=R+1

S − λ
S +R

P (Λ = λ), if S > R

(3.129)

3.7.2 Cryptographic Scheme

Since the cryptographic scheme is assumed to perfectly detect polluted coded packets,

decoding is successful when the λth unpolluted coded packet is received at the destina-

tion. Therefore, the probability of decoding success given ∆ = δ and Λ = λ is represented
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as

PS(δ, λ) =


1, if λ = δ = 0

1, if 1 ≤ λ ≤ δ

0, otherwise

(3.130)

for δ < R. If δ = R, the joint probability that decoding is successful and ∆ = R given

Λ = λ is given by

PS(R, λ)P (∆ = R|Λ = λ) =

(
R− 1

R− λ

)
pR−λf (1− pf )λ (3.131)

which denotes the probability that the Rth coded packet is the λth unpolluted coded

packet, given Λ = λ. And P (∆ = R|Λ = λ) is given by (3.111).

If S < R, following from (3.126), we obtain

W = P (Λ = 0) +
S∑
λ=1


R−1∑
δ=λ

S

S + δ

(3.110)︷ ︸︸ ︷
P (∆ = δ|Λ = λ)

+
(S − λ)

(3.111)︷ ︸︸ ︷
P (∆ = R|Λ = λ) +λ

(3.131)︷ ︸︸ ︷
PS(R, λ)P (∆ = R|Λ = λ)

S +R

P (Λ = λ). (3.132)

Similarly, if S = R,

W = P (Λ = 0) +
R−1∑
λ=1

{
R−1∑
δ=λ

S

S + δ
P (∆ = δ|Λ = λ)

+
(S − λ)P (∆ = R|Λ = λ) + λPS(R, λ)P (∆ = R|Λ = λ)

S +R

}
P (Λ = λ)

+
R(1− pf )R

S +R
P (Λ = R). (3.133)

Similarly, if S > R,

W = P (Λ = 0) +
R−1∑
λ=1

{
R−1∑
δ=λ

S

S + δ
P (∆ = δ|Λ = λ)

+
(S − λ)P (∆ = R|Λ = λ) + λPS(R, λ)P (∆ = R|Λ = λ)

S +R

}
P (Λ = λ)

+
(S −R) +R(1− pf )R

S +R
P (Λ = R) +

S∑
λ=R+1

S − λ
S +R

P (Λ = λ). (3.134)
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3.7.3 Scheme I

Following from (3.126), if S ≤ R, average throughput is given by

W = P (Λ = 0) +
S∑
λ=1

N∑
g=0

R∑
δ=λ

1

S + δ

(S − λ)P (∆ = δ|G = g,Λ = λ)︸ ︷︷ ︸
(3.115)

+

+ λPS(δ, g, λ)P (∆ = δ|G = g,Λ = λ)︸ ︷︷ ︸
(3.136)

P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

P (Λ = λ) (3.135)

where PS(δ, g, λ) denotes the conditional probability of decoding success given ∆ = δ,

G = g, Λ = λ and

PS(δ, g, λ)P (∆ = δ|G = g,Λ = λ)

=



(
δ − 1

δ − λ

)
P (Ĥ1|G = g)︸ ︷︷ ︸

(3.52)

δ−λ
P (Ĥ0, H0|G = g)︸ ︷︷ ︸

(3.63)

λ
, if 1 ≤ λ ≤ δ

0, otherwise

(3.136)

is the joint conditional probability of decoding success and ∆ = δ given G = g, Λ = λ,

based on (3.51).

Similarly, if S > R, we obtain

W = P (Λ = 0) +
R∑
λ=1

N∑
g=0

R∑
δ=λ

1

S + δ

(S − λ)P (∆ = δ|G = g,Λ = λ)︸ ︷︷ ︸
(3.115)

+

+ λPS(δ, g, λ)P (∆ = δ|G = g,Λ = λ)︸ ︷︷ ︸
(3.136)

P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

P (Λ = λ)

+
S∑

λ=R+1

S − λ
S +R

P (Λ = λ). (3.137)
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3.7.4 Scheme II

The scheme II always has delay of R in phase 2. i.e.,

P (∆ = δ|Λ = λ) =


1, if λ = 0 and δ = 0

1, if λ ≥ 1 and δ = R

0, otherwise

(3.138)

By (3.126) and (3.138), If S ≤ R, the average throughput is given by

W = P (Λ = 0) +
R∑

rf=0

S∑
λ=1

Z(λ, rf )P (Rf = rf )︸ ︷︷ ︸
(3.41)

P (Λ = λ) (3.139)

where

Z(λ, rf ) =
S − λ
S +R

(3.140)

if λ > min(S,R− rf ), and

Z(λ, rf ) =
N∑
g=0

rf∑
γ=0

1

S +R

{
S − λ+ λ

(
R−rf
λ

)(
R−rf+γ

λ

)}

·
(
rf
γ

)
POL(g)︸ ︷︷ ︸

(3.72)

γ(1− POL(g))rf−γ P (G = g|Λ = λ)︸ ︷︷ ︸
(3.47)

(3.141)

if λ ≤ min(S,R− rf ), based on (3.73).

3.7.5 Asymptotic Analysis for Large N

In this subsection, we provide the average throughput when N is large. If p ≤ t
N

, all

S message packets are correctly channel-decoded in phase 1 by (3.76) thus

lim
N,K→∞

W = 1, if p ≤ t

N
(3.142)

regardless of the used scheme during phase 2. Therefore, we derive the average through-

put for large N when p > t
N

, in the remainder of this subsection.
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3.7.5.1 Random Selection

Following from (3.76) and (3.129) we obtain

lim
N,K→∞

W =


0, if S > R

(1−pf )S

2
, if S ≤ R

(3.143)

3.7.5.2 Cryptographic Scheme

Following from (3.76) and (3.132)-(3.134) we obtain

lim
N,K→∞

W =


0, if S > R

R∑
δ=S

S

S + δ

(
δ − 1

δ − S

)
pδ−Sf (1− pf )S︸ ︷︷ ︸

(a)

, if S ≤ R
(3.144)

where (a) denotes the probability that the δth coded packet is the Sth unpolluted coded

packet.

3.7.5.3 Scheme I

From (3.76) and (3.135)-(3.137), the average throughput of the scheme I is simplified

to

lim
N,K→∞

W =


0, if S > R

min(N,SNp)∑
g=Np

R∑
δ=S

S

S + δ
PS(δ, g, S)P (∆ = δ|G = g,Λ = S)︸ ︷︷ ︸

(3.136)

P (G = g|Λ = S)︸ ︷︷ ︸
(3.82)

, if S ≤ R

(3.145)

3.7.5.4 Scheme II

From (3.76) and (3.139)-(3.141), the average throughput of the scheme II is simplified

as

lim
N,K→∞

W =
R∑

rf=0

Z(S, rf )P (Rf = rf )︸ ︷︷ ︸
(3.41)

(3.146)
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where

Z(S, rf )

=


0, if S > R− rf
min(N,SNp)∑

g=Np

rf∑
γ=0

S

S +R

(R−rf
S

)(R−rf+γ
S

)(rf
γ

)
POL(g)︸ ︷︷ ︸

(3.72)

γ(1− POL(g))rf−γ P (G = g|Λ = S)︸ ︷︷ ︸
(3.82)

, if S ≤ R− rf

(3.147)

3.7.6 Numerical Results

Fig. 3.21 shows the plot of the average throughput W versus the symbol error

probability p for the case of q = 256, S = 5, R = 10, pf = 0.3, and (N = 16, K = 14) 8bits

shortened RS code, while Fig. 3.22 is for (N = 255, K = 223) 8bits RS code. In both

figures, we can see that throughput of the scheme I is higher than that of the scheme II.

This is because the scheme II requires that the destination receives all R coded packets

before reconstructing message packets, while the scheme I starts reconstructing upon

receiving Λ coded packets which are linearly independent and decided to be unpolluted.

Therefore, the scheme I has shorter delay than the scheme II, so that the scheme I has

better throughput than the scheme II. We also can see that throughput of all schemes

decrease as p increases. This is intuitively because larger p causes larger probability of

decoding error PE and/or larger average delay E[∆], as we saw in Fig. 3.5, 3.6, 3.13,

and 3.14.

Fig. 3.23 shows the plot of the average throughput W versus the probability of

pollution attack pf for the case of q = 256, p = 0.1, S = 5, R = 10, and (N = 16, K = 14)

8bits shortened RS code, while Fig. 3.24 shows the plot for (N = 255, K = 223)

shortened RS code. We can see that the throughput decrease with increasing pf . This

is because the probability of decoding error PE and average delay E[δ] decreases with

increasing pf , as shown in Fig. 3.7, 3.8, 3.15, and 3.16. We also can see that the scheme

I has better throughput than the scheme II for the smaller pf , due to the smaller E[∆]
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of the scheme I. We also can see that throughput of each scheme is generally higher in

Fig. 3.23 than Fig. 3.24. This is intuitively because p = 0.1 causes that (255,223) code

has more Λ in phase 1 thus more E[∆] in phase 2 than (16,14) RS code.

Fig. 3.25 shows the plot of the average throughput W versus Hamming weight of false

injection vector WH(fr) for the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, and

(N = 16, K = 14) 8bits shortened RS code, while Fig. 3.26 is for (N = 255, K = 223) RS

code. Although we assume that WH(fr) = dmin through this chapter, we exceptionally

assume that WH(fr) can differ from dmin here. In both figures, we can see that the

scheme I outperforms the scheme II and approaches the cryptographic scheme, as WH(fr)

increases. This is intuitively because larger WH(fr) causes that polluted coded packets

are more easily distinguished from unpolluted coded packets, thus the scheme I can early

start reconstructing message packets with high detection accuracy, while the scheme II

still has disadvantage that all R coded packets are required. We also can see that the

throughput of the cryptographic scheme and random selection is not a function ofWH(fr),

thus has the same value of the throughput for all WH(fr)’s.

Fig. 3.27 shows the plot of the average throughput W versus message length K for

the case of q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, and N = 16, while Fig. 3.28 is

for N = 255. In both of figures, we note that throughput of all schemes decrease as K

increases. This is because larger K causes smaller error correction capability t, thus more

Λ, larger E[∆], finally results in smaller throughput W . For the scheme I and scheme II,

this is also because larger K causes smaller dmin which is equal to WH(fr). We can see

that the scheme I outperforms the scheme II and approaches the cryptographic scheme

in the practical range of K (i.e., not very large K). This is because if K is not very

large, the scheme I’s early recovering property benefits its throughput performance while

the scheme II is suffering from the requirement to receive all R coded packets. If K is

very large, dmin gets smaller, so it becomes harder to detect polluted coded packets. As

a result, the early recovering property does not benefit the scheme I’s throughput.



www.manaraa.com

86

10
−2

10
−1

10
0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Symbol Error Probability, p

A
ve

ra
ge

 T
hr

ou
gh

pu
t, 

W

q=256, S=5, R=10, p
f
=0.3, (16, 14) 8bits RS code

 

 
ana, random selection
sim, random selection
ana, cryptographic
sim, cryptographic
ana, proposed I with η
sim, proposed I with η
ana, proposed I with η

opt

sim, proposed I with η
opt

ana, proposed II
sim, proposed II

Figure 3.21 The average throughput W versus the symbol error probability p;
q = 256, S = 5, R = 10, pf = 0.3, N = 16, K = 14.
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Figure 3.22 The average throughput W versus the symbol error probability p;
q = 256, S = 5, R = 10, pf = 0.3, N = 255, K = 223.
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Figure 3.23 The average throughput W versus the probability of pollution attack pf ;
q = 256, p = 0.1, S = 5, R = 10, N = 16, K = 14.
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Figure 3.24 The average throughput W versus the probability of pollution attack pf ;
q = 256, p = 0.1, S = 5, R = 10, N = 255, K = 223.
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Figure 3.25 The average throughput W versus Hamming weight of false injection vector
WH(fr); q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 16, K = 14.
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Figure 3.26 The average throughput W versus Hamming weight of false injection vector
WH(fr); q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255, K = 223.
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Figure 3.27 The average throughput W versus message length K;
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 16.
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Figure 3.28 The average throughput W versus message length K;
q = 256, p = 0.1, S = 5, R = 10, pf = 0.3, N = 255.
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3.8 Conclusion

In this chapter, we proposed two physical-layer approaches to exclude polluted packets

from decoding at the destination by utilizing noisy information overheard from sources

to the destination, on the two-hop wireless networks with multiple sources, single relay,

and single destination. We provide the analytical derivation and numerical results for

the probability of decoding error, the average delay, and the average throughput of the

proposed schemes, the random selection scheme, and the cryptographic scheme. In the

practical level of source-to-destination wireless channel error, the probability of decod-

ing error of the proposed schemes are close to that of the cryptographic scheme which

perfectly detects polluted packets and much better than that of the random selection

scheme which does not detect pollution attacks. While the proposed scheme II has the

lower probability of decoding error than the proposed scheme I at the cost of longer

delay, the proposed scheme I has the higher average throughput.
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CHAPTER 4. CONCLUSIONS AND FUTURE WORKS

In this dissertation, we investigated two problems in order to improve the integrity

of random network coded information under pollution attack, on wireless two-hop relay

networks.

The first problem is about how the probability of symbol error and the throughput

are influenced by the finite field size or the number of combined packets when received

data might be polluted by malicious adversaries. Chapter 2 presented that there is

an optimized field size to minimize the probability of symbol error or to maximize the

throughput. It is also shown that the optimized finite field size to minimize the probabil-

ity of symbol error decreases with the decreasing trustworthiness of node. Based on this

result, if the trustworthiness of node is small, it is proposed to apply a smaller finite field

size. It is also shown that the probability of correct decoding exponentially decreases as

the number of combined packets increases and that the decaying rate is faster when the

trustworthiness of node is smaller. This work can be further extended as follows.

• If channel coding is applied for each packet transmission, the throughput and the

probability of symbol error can be improved because some channel error can be

corrected by the error correction capability of channel coding. This might cause

the different value of the optimized field size to minimize the probability of symbol

error or to maximize the throughput. Therefore, analysis with channel coding

would be an interesting future work.

• This chapter assumes that the finite field size and QAM constellation size are the
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same as q. If we let M be the constellation size of QAM, assuming q > M or q < M

could result in the difference for the probability of symbol error, the throughput,

and the optimized q.

The second problem is about how to reduce the damage from pollution attack by de-

tecting the polluted packets at the destination node. Chapter 3 suggested two approaches

which detect and discard polluted packets at the destination node by exploiting overheard

noisy information. The main advantage of proposed schemes is that cryptography-based

signature is not required. For the practical (i.e., not very large) values of source-to-

destination symbol error probability p, the probability of decoding error of the proposed

schemes approaches that of the cryptographic scheme which is assumed to perfectly de-

tect all polluted packets. Analysis of the average throughput shows that the proposed

scheme I has higher throughput than the proposed scheme II in the practical range of p

because the scheme I can start reconstructing message packets earlier than the scheme

II which requires all coded packets in phase 2. Future research directions for this work

are as follows.

• Let a group be a set of multiple received coded packets at the destination. Let

us say that a group is polluted if at least one polluted coded packet is included in

the group. Then, the destination detects the presence of pollution attack for each

group (not for each coded packet), by calculating

WH

(∑
i∈I

zi

)
(4.1)

where I denotes the set of coded packet indices in the group and zi denotes a

sufficient statistic of the packet by (3.15). If a group is detected as unpolluted,

all coded packets in the group are regarded as unpolluted without detecting each

packet in one by one manner. If the group is detected as polluted, there could be

several further options as follows.
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– All coded packets in the group are regarded as polluted, thus all of them are

discarded.

– Detect each packet in the group one by one.

– Divide the group into multiple subgroups and detect if each subgroup is pol-

luted or not.
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APPENDIX A. PROOF OF (2.24) AND (2.25)

We prove (2.24) and (2.25). Let

ws =
S∑
i=1

c̃s,iu[i]. (A.1)

It follows from (2.15) and (2.20) that

P (x̂s = xs|u = 0) = P (vs + ws = 0|u = 0) (A.2)

= P (vs = 0|u = 0) (A.3)

= P (vs = 0) (A.4)

= P (fs = 0)P (es,[s] = 0) +
(1− P (fs = 0))(1− P (es,[s] = 0))

q − 1
(A.5)

where the last equality follows from the assumption that nonzero values of fs are equiprob-

able. This proves (2.24).

Similarly,

P (x̂s = xs|u 6= 0)

= P (vs + ws = 0|u 6= 0) (A.6)

= P (vs = 0|u 6= 0)P (ws = 0|u 6= 0) +
P (vs 6= 0|u 6= 0)P (ws 6= 0|u 6= 0)

q − 1
(A.7)

= P (vs = 0)P (ws = 0|u 6= 0) +
P (vs 6= 0)P (ws 6= 0|u 6= 0)

q − 1
(A.8)

Let

c̃s =


c̃s,1
...

c̃s,S

 . (A.9)
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Then, the set of c̃s’s that satisfy

ws = u · c̃s = 0 (A.10)

is the null space of u. Since u is not a zero vector, the rank of u is one. By the rank

theorem [14], the dimension of the null space of u is equal to S−rank(u) = S−1. Hence,

the number of c̃s’s that cause u · c̃s = 0 is qS−1. Therefore,

P (u · c̃s = 0|u 6= 0)

=
The number of nonzero c̃s’s that satisfy u · c̃s = 0 given that u 6= 0

The number of nonzero c̃s’s
(A.11)

=
qS−1 − 1

qS − 1
(A.12)

≈ 1

q
. (A.13)

Therefore, it follows from (A.8) and (A.12) we obtain

P (x̂s = xs|u 6= 0) =
qS−1 − P (vs = 0)

qS − 1
. (A.14)

This proves (2.25).
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APPENDIX B. PROOF OF (2.49)

It follows from (2.24) and (2.28) that if α = 1, i.e., pf + pe =
qpfpe
q−1

, then PC = 1.

Hence,

lim
S,N→∞

W =
β log2 q

1 + β
. (B.1)

If α < 1, i.e., pf + pe >
qpfpe
q−1

, then limS,N→∞ PC = 1
q
. Hence,

lim
S,N→∞

W =
β log2 q

(1 + β)q
. (B.2)

This completes the proof of (2.49).
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APPENDIX C. PROOF OF (3.14)

In this Appendix we prove that (3.14) is equivalent to f[1] = 0, · · · , f[Λ] = 0. First of

all, (3.14) is equivalent to 

b(1)

...

b(S−Λ)

c[1]

...

c[Λ]


︸ ︷︷ ︸

C

−1 

0

...

0

f[1]

...

f[Λ]


︸ ︷︷ ︸

F

=



0

...

0


(C.1)

by (3.10). If we let jn be the nth column vector of F, the set of jn satisfying

C−1jn =


0

...

0


S zeros (C.2)

is null space of C−1 where the right hand side of (C.2) is a column vector of S zeros.

Since C−1 is an invertible matrix, its rank is S. By the rank theorem [14], dimension of

null space of C−1 is S − S = 0. Therefore, the number of jn satisfying (C.2) is q0 = 1.

Since a zero vector is always included in null space, the only jn satisfying (C.2) is a zero

vector. Since this holds for any n ∈ {1, · · · , N}, all N column vectors of F are zero

vectors. This is equivalent to f[1] = 0, · · · , f[Λ] = 0.
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APPENDIX D. PROOF OF SUFFICIENT STATISTIC zr IN

(3.15)

In this Appendix we prove that zr is a sufficient statistic, by showing that

I(fr; r1, · · · , rS,pr) = I(fr; zr). (D.1)

When S = 2,

I(fr; r1, r2,pr) = H(r1, r2,pr)−H(r1, r2,pr|fr) (D.2)

where

H(r1, r2,pr) = H(x1 + e1,x2 + e2, cr,1x1 + cr,2x2 + fr) (D.3)

= H(x1 + e1) +H(x2 + e2, cr,1x1 + cr,2x2 + fr|x1 + e1︸ ︷︷ ︸
:=u1

) (D.4)

= H(x1 + e1) +H(x2 + e2, cr,1(u1 − e1) + cr,2x2 + fr|u1) (D.5)

= H(x1 + e1) +H(x2 + e2,−cr,1e1 + cr,2x2 + fr) (D.6)

= H(x1 + e1) +H(x2 + e2) +H(−cr,1e1 + cr,2x2 + fr︸ ︷︷ ︸
=−cr,1e1+cr,2(u2−e2)+fr

|x2 + e2︸ ︷︷ ︸
:=u2

) (D.7)

= H(x1 + e1) +H(x2 + e2) +H(−cr,1e1 − cr,2e2 + fr) (D.8)
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and

H(r1, r2,pr|fr) = H(x1 + e1,x2 + e2, cr,1x1 + cr,2x2) (D.9)

= H(x1 + e1) +H(x2 + e2, cr,1x1 + cr,2x2︸ ︷︷ ︸
=cr,1(u1−e1)+cr,2x2

|x1 + e1︸ ︷︷ ︸
:=u1

) (D.10)

= H(x1 + e1) +H(x2 + e2,−cr,1e1 + cr,2x2) (D.11)

= H(x1 + e1) +H(x2 + e2) +H( −cr,1e1 + cr,2x2︸ ︷︷ ︸
=−cr,1e1+cr,2(u2−e2)

|x2 + e2︸ ︷︷ ︸
:=u2

) (D.12)

= H(x1 + e1) +H(x2 + e2) +H(−cr,1e1 − cr,2e2). (D.13)

Therefore, by substituting (D.8) and (D.13) into (D.2),

I(fr; r1, r2,pr) = H(−cr,1e1 − cr,2e2 + fr)− H(−cr,1e1 − cr,2e2)︸ ︷︷ ︸
=H(−cr,1e1−cr,2e2+fr|fr)

(D.14)

= I(fr;−cr,1e1 − cr,2e2 + fr) (D.15)

= I(fr; zr). (D.16)

Therefore, (D.1) holds for S = 2.

This can be generalized to S > 2 sources. In general,

I(fr; r1, r2, · · · , rS,pr) = H(r1, r2, · · · , rS,pr)−H(r1, r2, · · · , rS,pr|fr) (D.17)
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where

H(r1, r2, · · · , rS,pr)

= H(x1 + e1, · · · ,xS + eS,
S∑
s=1

cr,sxs + fr) (D.18)

= H(x1 + e1) +H(x2 + e2, · · · ,xS + eS,
S∑
s=1

cr,sxs + fr|x1 + e1︸ ︷︷ ︸
:=u1

) (D.19)

= H(x1 + e1) +H(x2 + e2, · · · ,xS + eS,−cr,1e1 +
S∑
s=2

cr,sxs + fr) (D.20)

...

=
S∑
s=1

H(xs + es) +H(−
S∑
s=1

cr,ses + fr) (D.21)

and

H(r1, r2, · · · , rS,pr|fr)

= H(x1 + e1, · · · ,xS + eS,
S∑
s=1

cr,sxs + fr|fr) (D.22)

= H(x1 + e1, · · · ,xS + eS,
S∑
s=1

cr,sxs) (D.23)

= H(x1 + e1) +H(x2 + e2, · · · ,xS + eS,
S∑
s=1

cr,sxs|x1 + e1︸ ︷︷ ︸
:=u1

) (D.24)

= H(x1 + e1) +H(x2 + e2, · · · ,xS + eS,−cr,1e1 +
S∑
s=2

cr,sxs) (D.25)

...

=
S∑
s=1

H(xs + es) +H(−
S∑
s=1

cr,ses). (D.26)
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By substituting (D.21) and (D.26) into (D.17), we obtain

I(fr; r1, r2, · · · , rS,pr) = H(−
S∑
s=1

cr,ses + fr)−H(−
S∑
s=1

cr,ses) (D.27)

= H(−
S∑
s=1

cr,ses + fr)−H(−
S∑
s=1

cr,ses + fr|fr) (D.28)

= I(fr;−
S∑
s=1

cr,ses + fr) (D.29)

= I(fr; zr). (D.30)

Therefore, (D.1) holds.
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